| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flge |
|- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A <-> B <_ ( |_ ` A ) ) ) |
| 2 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
| 3 |
|
lenlt |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> -. A < B ) ) |
| 4 |
2 3
|
sylan |
|- ( ( B e. ZZ /\ A e. RR ) -> ( B <_ A <-> -. A < B ) ) |
| 5 |
4
|
ancoms |
|- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A <-> -. A < B ) ) |
| 6 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 7 |
|
lenlt |
|- ( ( B e. RR /\ ( |_ ` A ) e. RR ) -> ( B <_ ( |_ ` A ) <-> -. ( |_ ` A ) < B ) ) |
| 8 |
2 6 7
|
syl2anr |
|- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ ( |_ ` A ) <-> -. ( |_ ` A ) < B ) ) |
| 9 |
1 5 8
|
3bitr3d |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -. A < B <-> -. ( |_ ` A ) < B ) ) |
| 10 |
9
|
con4bid |
|- ( ( A e. RR /\ B e. ZZ ) -> ( A < B <-> ( |_ ` A ) < B ) ) |