Step |
Hyp |
Ref |
Expression |
1 |
|
nn0nndivcl |
|- ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |
2 |
|
reflcl |
|- ( ( K / L ) e. RR -> ( |_ ` ( K / L ) ) e. RR ) |
3 |
1 2
|
syl |
|- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. RR ) |
4 |
3
|
3adant2 |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. RR ) |
5 |
1
|
3adant2 |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |
6 |
|
nn0nndivcl |
|- ( ( N e. NN0 /\ L e. NN ) -> ( N / L ) e. RR ) |
7 |
6
|
3adant1 |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( N / L ) e. RR ) |
8 |
4 5 7
|
3jca |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) ) |
9 |
8
|
adantr |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) ) |
10 |
|
fldivnn0le |
|- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
11 |
10
|
3adant2 |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
13 |
|
simpr |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> K < N ) |
14 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
15 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
16 |
|
nnre |
|- ( L e. NN -> L e. RR ) |
17 |
|
nngt0 |
|- ( L e. NN -> 0 < L ) |
18 |
16 17
|
jca |
|- ( L e. NN -> ( L e. RR /\ 0 < L ) ) |
19 |
14 15 18
|
3anim123i |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) ) |
20 |
19
|
adantr |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) ) |
21 |
|
ltdiv1 |
|- ( ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) -> ( K < N <-> ( K / L ) < ( N / L ) ) ) |
22 |
20 21
|
syl |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K < N <-> ( K / L ) < ( N / L ) ) ) |
23 |
13 22
|
mpbid |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K / L ) < ( N / L ) ) |
24 |
12 23
|
jca |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( N / L ) ) ) |
25 |
|
lelttr |
|- ( ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) -> ( ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( N / L ) ) -> ( |_ ` ( K / L ) ) < ( N / L ) ) ) |
26 |
9 24 25
|
sylc |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( |_ ` ( K / L ) ) < ( N / L ) ) |
27 |
26
|
ex |
|- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K < N -> ( |_ ` ( K / L ) ) < ( N / L ) ) ) |