Step |
Hyp |
Ref |
Expression |
1 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) e. RR ) |
3 |
|
simpl |
|- ( ( A e. RR /\ -. A e. ZZ ) -> A e. RR ) |
4 |
|
fllelt |
|- ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |
6 |
5
|
simpld |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) <_ A ) |
7 |
|
simpr |
|- ( ( A e. RR /\ -. A e. ZZ ) -> -. A e. ZZ ) |
8 |
|
flidz |
|- ( A e. RR -> ( ( |_ ` A ) = A <-> A e. ZZ ) ) |
9 |
8
|
adantr |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( ( |_ ` A ) = A <-> A e. ZZ ) ) |
10 |
7 9
|
mtbird |
|- ( ( A e. RR /\ -. A e. ZZ ) -> -. ( |_ ` A ) = A ) |
11 |
10
|
neqned |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) =/= A ) |
12 |
11
|
necomd |
|- ( ( A e. RR /\ -. A e. ZZ ) -> A =/= ( |_ ` A ) ) |
13 |
2 3 6 12
|
leneltd |
|- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) < A ) |