Metamath Proof Explorer


Theorem flmod

Description: The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion flmod
|- ( A e. RR -> ( |_ ` A ) = ( A - ( A mod 1 ) ) )

Proof

Step Hyp Ref Expression
1 modfrac
 |-  ( A e. RR -> ( A mod 1 ) = ( A - ( |_ ` A ) ) )
2 1 oveq2d
 |-  ( A e. RR -> ( A - ( A mod 1 ) ) = ( A - ( A - ( |_ ` A ) ) ) )
3 recn
 |-  ( A e. RR -> A e. CC )
4 reflcl
 |-  ( A e. RR -> ( |_ ` A ) e. RR )
5 4 recnd
 |-  ( A e. RR -> ( |_ ` A ) e. CC )
6 3 5 nncand
 |-  ( A e. RR -> ( A - ( A - ( |_ ` A ) ) ) = ( |_ ` A ) )
7 2 6 eqtr2d
 |-  ( A e. RR -> ( |_ ` A ) = ( A - ( A mod 1 ) ) )