Description: The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | flmod | |- ( A e. RR -> ( |_ ` A ) = ( A - ( A mod 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modfrac | |- ( A e. RR -> ( A mod 1 ) = ( A - ( |_ ` A ) ) ) |
|
2 | 1 | oveq2d | |- ( A e. RR -> ( A - ( A mod 1 ) ) = ( A - ( A - ( |_ ` A ) ) ) ) |
3 | recn | |- ( A e. RR -> A e. CC ) |
|
4 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
5 | 4 | recnd | |- ( A e. RR -> ( |_ ` A ) e. CC ) |
6 | 3 5 | nncand | |- ( A e. RR -> ( A - ( A - ( |_ ` A ) ) ) = ( |_ ` A ) ) |
7 | 2 6 | eqtr2d | |- ( A e. RR -> ( |_ ` A ) = ( A - ( A mod 1 ) ) ) |