| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( |_ ` A ) e. RR ) | 
						
							| 3 |  | simpr |  |-  ( ( N e. NN0 /\ A e. RR ) -> A e. RR ) | 
						
							| 4 |  | simpl |  |-  ( ( N e. NN0 /\ A e. RR ) -> N e. NN0 ) | 
						
							| 5 | 4 | nn0red |  |-  ( ( N e. NN0 /\ A e. RR ) -> N e. RR ) | 
						
							| 6 | 4 | nn0ge0d |  |-  ( ( N e. NN0 /\ A e. RR ) -> 0 <_ N ) | 
						
							| 7 |  | flle |  |-  ( A e. RR -> ( |_ ` A ) <_ A ) | 
						
							| 8 | 7 | adantl |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( |_ ` A ) <_ A ) | 
						
							| 9 | 2 3 5 6 8 | lemul2ad |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( N x. A ) ) | 
						
							| 10 | 5 3 | remulcld |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( N x. A ) e. RR ) | 
						
							| 11 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 12 |  | flcl |  |-  ( A e. RR -> ( |_ ` A ) e. ZZ ) | 
						
							| 13 |  | zmulcl |  |-  ( ( N e. ZZ /\ ( |_ ` A ) e. ZZ ) -> ( N x. ( |_ ` A ) ) e. ZZ ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) e. ZZ ) | 
						
							| 15 |  | flge |  |-  ( ( ( N x. A ) e. RR /\ ( N x. ( |_ ` A ) ) e. ZZ ) -> ( ( N x. ( |_ ` A ) ) <_ ( N x. A ) <-> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) ) | 
						
							| 16 | 10 14 15 | syl2anc |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( ( N x. ( |_ ` A ) ) <_ ( N x. A ) <-> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) ) | 
						
							| 17 | 9 16 | mpbid |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |