Step |
Hyp |
Ref |
Expression |
1 |
|
ssidd |
|- ( T. -> RR C_ RR ) |
2 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
3 |
|
resubcl |
|- ( ( x e. RR /\ ( |_ ` x ) e. RR ) -> ( x - ( |_ ` x ) ) e. RR ) |
4 |
2 3
|
mpdan |
|- ( x e. RR -> ( x - ( |_ ` x ) ) e. RR ) |
5 |
4
|
recnd |
|- ( x e. RR -> ( x - ( |_ ` x ) ) e. CC ) |
6 |
5
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( x - ( |_ ` x ) ) e. CC ) |
7 |
|
1red |
|- ( T. -> 1 e. RR ) |
8 |
|
id |
|- ( x e. RR -> x e. RR ) |
9 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
10 |
2 8 9
|
abssubge0d |
|- ( x e. RR -> ( abs ` ( x - ( |_ ` x ) ) ) = ( x - ( |_ ` x ) ) ) |
11 |
|
fracle1 |
|- ( x e. RR -> ( x - ( |_ ` x ) ) <_ 1 ) |
12 |
10 11
|
eqbrtrd |
|- ( x e. RR -> ( abs ` ( x - ( |_ ` x ) ) ) <_ 1 ) |
13 |
12
|
ad2antrl |
|- ( ( T. /\ ( x e. RR /\ 1 <_ x ) ) -> ( abs ` ( x - ( |_ ` x ) ) ) <_ 1 ) |
14 |
1 6 7 7 13
|
elo1d |
|- ( T. -> ( x e. RR |-> ( x - ( |_ ` x ) ) ) e. O(1) ) |
15 |
14
|
mptru |
|- ( x e. RR |-> ( x - ( |_ ` x ) ) ) e. O(1) |