Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( N = ( ( 2 x. M ) + 1 ) -> ( N / 4 ) = ( ( ( 2 x. M ) + 1 ) / 4 ) ) |
2 |
|
2cnd |
|- ( M e. ZZ -> 2 e. CC ) |
3 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
4 |
2 3
|
mulcld |
|- ( M e. ZZ -> ( 2 x. M ) e. CC ) |
5 |
|
1cnd |
|- ( M e. ZZ -> 1 e. CC ) |
6 |
|
4cn |
|- 4 e. CC |
7 |
|
4ne0 |
|- 4 =/= 0 |
8 |
6 7
|
pm3.2i |
|- ( 4 e. CC /\ 4 =/= 0 ) |
9 |
8
|
a1i |
|- ( M e. ZZ -> ( 4 e. CC /\ 4 =/= 0 ) ) |
10 |
|
divdir |
|- ( ( ( 2 x. M ) e. CC /\ 1 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) ) |
11 |
4 5 9 10
|
syl3anc |
|- ( M e. ZZ -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) ) |
12 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
13 |
12
|
eqcomi |
|- 4 = ( 2 x. 2 ) |
14 |
13
|
a1i |
|- ( M e. ZZ -> 4 = ( 2 x. 2 ) ) |
15 |
14
|
oveq2d |
|- ( M e. ZZ -> ( ( 2 x. M ) / 4 ) = ( ( 2 x. M ) / ( 2 x. 2 ) ) ) |
16 |
|
2ne0 |
|- 2 =/= 0 |
17 |
16
|
a1i |
|- ( M e. ZZ -> 2 =/= 0 ) |
18 |
3 2 2 17 17
|
divcan5d |
|- ( M e. ZZ -> ( ( 2 x. M ) / ( 2 x. 2 ) ) = ( M / 2 ) ) |
19 |
15 18
|
eqtrd |
|- ( M e. ZZ -> ( ( 2 x. M ) / 4 ) = ( M / 2 ) ) |
20 |
19
|
oveq1d |
|- ( M e. ZZ -> ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) |
21 |
11 20
|
eqtrd |
|- ( M e. ZZ -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) |
22 |
1 21
|
sylan9eqr |
|- ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( N / 4 ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) |
23 |
22
|
fveq2d |
|- ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
24 |
|
iftrue |
|- ( 2 || M -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( M / 2 ) ) |
25 |
24
|
adantr |
|- ( ( 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( M / 2 ) ) |
26 |
|
1re |
|- 1 e. RR |
27 |
|
0le1 |
|- 0 <_ 1 |
28 |
|
4re |
|- 4 e. RR |
29 |
|
4pos |
|- 0 < 4 |
30 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 1 / 4 ) ) |
31 |
26 27 28 29 30
|
mp4an |
|- 0 <_ ( 1 / 4 ) |
32 |
|
1lt4 |
|- 1 < 4 |
33 |
|
recgt1 |
|- ( ( 4 e. RR /\ 0 < 4 ) -> ( 1 < 4 <-> ( 1 / 4 ) < 1 ) ) |
34 |
28 29 33
|
mp2an |
|- ( 1 < 4 <-> ( 1 / 4 ) < 1 ) |
35 |
32 34
|
mpbi |
|- ( 1 / 4 ) < 1 |
36 |
31 35
|
pm3.2i |
|- ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) |
37 |
|
evend2 |
|- ( M e. ZZ -> ( 2 || M <-> ( M / 2 ) e. ZZ ) ) |
38 |
37
|
biimpac |
|- ( ( 2 || M /\ M e. ZZ ) -> ( M / 2 ) e. ZZ ) |
39 |
|
4nn |
|- 4 e. NN |
40 |
|
nnrecre |
|- ( 4 e. NN -> ( 1 / 4 ) e. RR ) |
41 |
39 40
|
ax-mp |
|- ( 1 / 4 ) e. RR |
42 |
|
flbi2 |
|- ( ( ( M / 2 ) e. ZZ /\ ( 1 / 4 ) e. RR ) -> ( ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) |
43 |
38 41 42
|
sylancl |
|- ( ( 2 || M /\ M e. ZZ ) -> ( ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) |
44 |
36 43
|
mpbiri |
|- ( ( 2 || M /\ M e. ZZ ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) ) |
45 |
25 44
|
eqtr4d |
|- ( ( 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
46 |
|
iffalse |
|- ( -. 2 || M -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( ( M - 1 ) / 2 ) ) |
47 |
46
|
adantr |
|- ( ( -. 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( ( M - 1 ) / 2 ) ) |
48 |
|
odd2np1 |
|- ( M e. ZZ -> ( -. 2 || M <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = M ) ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
51 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) ) |
52 |
49 50 50 51
|
mp3an |
|- ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) |
53 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
54 |
53 12
|
oveq12i |
|- ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 2 / 4 ) |
55 |
52 54
|
eqtr3i |
|- ( 1 / 2 ) = ( 2 / 4 ) |
56 |
55
|
oveq1i |
|- ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) |
57 |
|
2cn |
|- 2 e. CC |
58 |
57 49 6 7
|
divdiri |
|- ( ( 2 + 1 ) / 4 ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) |
59 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
60 |
59
|
oveq1i |
|- ( ( 2 + 1 ) / 4 ) = ( 3 / 4 ) |
61 |
56 58 60
|
3eqtr2i |
|- ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) |
62 |
61
|
a1i |
|- ( x e. ZZ -> ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) ) |
63 |
62
|
oveq2d |
|- ( x e. ZZ -> ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) = ( x + ( 3 / 4 ) ) ) |
64 |
63
|
fveq2d |
|- ( x e. ZZ -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = ( |_ ` ( x + ( 3 / 4 ) ) ) ) |
65 |
|
3re |
|- 3 e. RR |
66 |
|
0re |
|- 0 e. RR |
67 |
|
3pos |
|- 0 < 3 |
68 |
66 65 67
|
ltleii |
|- 0 <_ 3 |
69 |
|
divge0 |
|- ( ( ( 3 e. RR /\ 0 <_ 3 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 3 / 4 ) ) |
70 |
65 68 28 29 69
|
mp4an |
|- 0 <_ ( 3 / 4 ) |
71 |
|
3lt4 |
|- 3 < 4 |
72 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
73 |
39 72
|
ax-mp |
|- 4 e. RR+ |
74 |
|
divlt1lt |
|- ( ( 3 e. RR /\ 4 e. RR+ ) -> ( ( 3 / 4 ) < 1 <-> 3 < 4 ) ) |
75 |
65 73 74
|
mp2an |
|- ( ( 3 / 4 ) < 1 <-> 3 < 4 ) |
76 |
71 75
|
mpbir |
|- ( 3 / 4 ) < 1 |
77 |
70 76
|
pm3.2i |
|- ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) |
78 |
65 28 7
|
redivcli |
|- ( 3 / 4 ) e. RR |
79 |
|
flbi2 |
|- ( ( x e. ZZ /\ ( 3 / 4 ) e. RR ) -> ( ( |_ ` ( x + ( 3 / 4 ) ) ) = x <-> ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) ) ) |
80 |
78 79
|
mpan2 |
|- ( x e. ZZ -> ( ( |_ ` ( x + ( 3 / 4 ) ) ) = x <-> ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) ) ) |
81 |
77 80
|
mpbiri |
|- ( x e. ZZ -> ( |_ ` ( x + ( 3 / 4 ) ) ) = x ) |
82 |
64 81
|
eqtrd |
|- ( x e. ZZ -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = x ) |
83 |
82
|
adantr |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = x ) |
84 |
|
oveq1 |
|- ( M = ( ( 2 x. x ) + 1 ) -> ( M / 2 ) = ( ( ( 2 x. x ) + 1 ) / 2 ) ) |
85 |
84
|
eqcoms |
|- ( ( ( 2 x. x ) + 1 ) = M -> ( M / 2 ) = ( ( ( 2 x. x ) + 1 ) / 2 ) ) |
86 |
|
2z |
|- 2 e. ZZ |
87 |
86
|
a1i |
|- ( x e. ZZ -> 2 e. ZZ ) |
88 |
|
id |
|- ( x e. ZZ -> x e. ZZ ) |
89 |
87 88
|
zmulcld |
|- ( x e. ZZ -> ( 2 x. x ) e. ZZ ) |
90 |
89
|
zcnd |
|- ( x e. ZZ -> ( 2 x. x ) e. CC ) |
91 |
|
1cnd |
|- ( x e. ZZ -> 1 e. CC ) |
92 |
50
|
a1i |
|- ( x e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
93 |
|
divdir |
|- ( ( ( 2 x. x ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) ) |
94 |
90 91 92 93
|
syl3anc |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) ) |
95 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
96 |
|
2cnd |
|- ( x e. ZZ -> 2 e. CC ) |
97 |
16
|
a1i |
|- ( x e. ZZ -> 2 =/= 0 ) |
98 |
95 96 97
|
divcan3d |
|- ( x e. ZZ -> ( ( 2 x. x ) / 2 ) = x ) |
99 |
98
|
oveq1d |
|- ( x e. ZZ -> ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) = ( x + ( 1 / 2 ) ) ) |
100 |
94 99
|
eqtrd |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( x + ( 1 / 2 ) ) ) |
101 |
85 100
|
sylan9eqr |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( M / 2 ) = ( x + ( 1 / 2 ) ) ) |
102 |
101
|
oveq1d |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M / 2 ) + ( 1 / 4 ) ) = ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) ) |
103 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
104 |
103
|
a1i |
|- ( x e. ZZ -> ( 1 / 2 ) e. CC ) |
105 |
6 7
|
reccli |
|- ( 1 / 4 ) e. CC |
106 |
105
|
a1i |
|- ( x e. ZZ -> ( 1 / 4 ) e. CC ) |
107 |
95 104 106
|
addassd |
|- ( x e. ZZ -> ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
108 |
107
|
adantr |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
109 |
102 108
|
eqtrd |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M / 2 ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) |
110 |
109
|
fveq2d |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) ) |
111 |
|
oveq1 |
|- ( M = ( ( 2 x. x ) + 1 ) -> ( M - 1 ) = ( ( ( 2 x. x ) + 1 ) - 1 ) ) |
112 |
111
|
eqcoms |
|- ( ( ( 2 x. x ) + 1 ) = M -> ( M - 1 ) = ( ( ( 2 x. x ) + 1 ) - 1 ) ) |
113 |
|
pncan1 |
|- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 1 ) - 1 ) = ( 2 x. x ) ) |
114 |
90 113
|
syl |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) - 1 ) = ( 2 x. x ) ) |
115 |
112 114
|
sylan9eqr |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( M - 1 ) = ( 2 x. x ) ) |
116 |
115
|
oveq1d |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = ( ( 2 x. x ) / 2 ) ) |
117 |
98
|
adantr |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( 2 x. x ) / 2 ) = x ) |
118 |
116 117
|
eqtrd |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = x ) |
119 |
83 110 118
|
3eqtr4rd |
|- ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
120 |
119
|
ex |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) |
121 |
120
|
adantl |
|- ( ( M e. ZZ /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) |
122 |
121
|
rexlimdva |
|- ( M e. ZZ -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) |
123 |
48 122
|
sylbid |
|- ( M e. ZZ -> ( -. 2 || M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) |
124 |
123
|
impcom |
|- ( ( -. 2 || M /\ M e. ZZ ) -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
125 |
47 124
|
eqtrd |
|- ( ( -. 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
126 |
45 125
|
pm2.61ian |
|- ( M e. ZZ -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) |
127 |
126
|
eqcomd |
|- ( M e. ZZ -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) |
128 |
127
|
adantr |
|- ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) |
129 |
23 128
|
eqtrd |
|- ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( N / 4 ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) |