| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flodddiv4lt |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( |_ ` ( N / 4 ) ) < ( N / 4 ) ) |
| 2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 3 |
|
4re |
|- 4 e. RR |
| 4 |
3
|
a1i |
|- ( N e. ZZ -> 4 e. RR ) |
| 5 |
|
4ne0 |
|- 4 =/= 0 |
| 6 |
5
|
a1i |
|- ( N e. ZZ -> 4 =/= 0 ) |
| 7 |
2 4 6
|
redivcld |
|- ( N e. ZZ -> ( N / 4 ) e. RR ) |
| 8 |
7
|
flcld |
|- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) e. ZZ ) |
| 9 |
8
|
zred |
|- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) e. RR ) |
| 10 |
|
2rp |
|- 2 e. RR+ |
| 11 |
10
|
a1i |
|- ( N e. ZZ -> 2 e. RR+ ) |
| 12 |
9 7 11
|
ltmul1d |
|- ( N e. ZZ -> ( ( |_ ` ( N / 4 ) ) < ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) ) |
| 13 |
12
|
adantr |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) < ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) ) |
| 14 |
1 13
|
mpbid |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) |
| 15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 16 |
15
|
halfcld |
|- ( N e. ZZ -> ( N / 2 ) e. CC ) |
| 17 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
| 18 |
|
2ne0 |
|- 2 =/= 0 |
| 19 |
18
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
| 20 |
16 17 19
|
divcan1d |
|- ( N e. ZZ -> ( ( ( N / 2 ) / 2 ) x. 2 ) = ( N / 2 ) ) |
| 21 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 22 |
21
|
a1i |
|- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 23 |
|
divdiv1 |
|- ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 24 |
15 22 22 23
|
syl3anc |
|- ( N e. ZZ -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 25 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 26 |
25
|
a1i |
|- ( N e. ZZ -> ( 2 x. 2 ) = 4 ) |
| 27 |
26
|
oveq2d |
|- ( N e. ZZ -> ( N / ( 2 x. 2 ) ) = ( N / 4 ) ) |
| 28 |
24 27
|
eqtrd |
|- ( N e. ZZ -> ( ( N / 2 ) / 2 ) = ( N / 4 ) ) |
| 29 |
28
|
oveq1d |
|- ( N e. ZZ -> ( ( ( N / 2 ) / 2 ) x. 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 30 |
20 29
|
eqtr3d |
|- ( N e. ZZ -> ( N / 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 31 |
30
|
adantr |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( N / 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 32 |
14 31
|
breqtrrd |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( N / 2 ) ) |