| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b |  |-  ( ph -> B e. ( fBas ` Y ) ) | 
						
							| 2 |  | fmfnfm.l |  |-  ( ph -> L e. ( Fil ` X ) ) | 
						
							| 3 |  | fmfnfm.f |  |-  ( ph -> F : Y --> X ) | 
						
							| 4 |  | fmfnfm.fm |  |-  ( ph -> ( ( X FilMap F ) ` B ) C_ L ) | 
						
							| 5 |  | fbssfi |  |-  ( ( B e. ( fBas ` Y ) /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s ) | 
						
							| 6 | 1 5 | sylan |  |-  ( ( ph /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s ) | 
						
							| 7 |  | sstr2 |  |-  ( ( F " w ) C_ ( F " s ) -> ( ( F " s ) C_ t -> ( F " w ) C_ t ) ) | 
						
							| 8 |  | imass2 |  |-  ( w C_ s -> ( F " w ) C_ ( F " s ) ) | 
						
							| 9 | 7 8 | syl11 |  |-  ( ( F " s ) C_ t -> ( w C_ s -> ( F " w ) C_ t ) ) | 
						
							| 10 | 9 | reximdv |  |-  ( ( F " s ) C_ t -> ( E. w e. B w C_ s -> E. w e. B ( F " w ) C_ t ) ) | 
						
							| 11 | 6 10 | syl5com |  |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> E. w e. B ( F " w ) C_ t ) ) | 
						
							| 12 |  | filtop |  |-  ( L e. ( Fil ` X ) -> X e. L ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> X e. L ) | 
						
							| 14 |  | elfm |  |-  ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) ) | 
						
							| 15 | 13 1 3 14 | syl3anc |  |-  ( ph -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) ) | 
						
							| 16 | 4 | sseld |  |-  ( ph -> ( t e. ( ( X FilMap F ) ` B ) -> t e. L ) ) | 
						
							| 17 | 15 16 | sylbird |  |-  ( ph -> ( ( t C_ X /\ E. w e. B ( F " w ) C_ t ) -> t e. L ) ) | 
						
							| 18 | 17 | expcomd |  |-  ( ph -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 20 | 11 19 | syld |  |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 21 | 20 | ex |  |-  ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |