| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b |  |-  ( ph -> B e. ( fBas ` Y ) ) | 
						
							| 2 |  | fmfnfm.l |  |-  ( ph -> L e. ( Fil ` X ) ) | 
						
							| 3 |  | fmfnfm.f |  |-  ( ph -> F : Y --> X ) | 
						
							| 4 |  | fmfnfm.fm |  |-  ( ph -> ( ( X FilMap F ) ` B ) C_ L ) | 
						
							| 5 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> L e. ( Fil ` X ) ) | 
						
							| 6 |  | simplr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> x e. L ) | 
						
							| 7 |  | ffn |  |-  ( F : Y --> X -> F Fn Y ) | 
						
							| 8 |  | dffn4 |  |-  ( F Fn Y <-> F : Y -onto-> ran F ) | 
						
							| 9 | 7 8 | sylib |  |-  ( F : Y --> X -> F : Y -onto-> ran F ) | 
						
							| 10 |  | foima |  |-  ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) | 
						
							| 11 | 3 9 10 | 3syl |  |-  ( ph -> ( F " Y ) = ran F ) | 
						
							| 12 |  | filtop |  |-  ( L e. ( Fil ` X ) -> X e. L ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> X e. L ) | 
						
							| 14 |  | fgcl |  |-  ( B e. ( fBas ` Y ) -> ( Y filGen B ) e. ( Fil ` Y ) ) | 
						
							| 15 |  | filtop |  |-  ( ( Y filGen B ) e. ( Fil ` Y ) -> Y e. ( Y filGen B ) ) | 
						
							| 16 | 1 14 15 | 3syl |  |-  ( ph -> Y e. ( Y filGen B ) ) | 
						
							| 17 |  | eqid |  |-  ( Y filGen B ) = ( Y filGen B ) | 
						
							| 18 | 17 | imaelfm |  |-  ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen B ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) | 
						
							| 19 | 13 1 3 16 18 | syl31anc |  |-  ( ph -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) | 
						
							| 20 | 11 19 | eqeltrrd |  |-  ( ph -> ran F e. ( ( X FilMap F ) ` B ) ) | 
						
							| 21 | 4 20 | sseldd |  |-  ( ph -> ran F e. L ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ran F e. L ) | 
						
							| 23 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) | 
						
							| 24 | 5 6 22 23 | syl3anc |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) e. L ) | 
						
							| 25 |  | simprr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> t C_ X ) | 
						
							| 26 |  | elin |  |-  ( y e. ( x i^i ran F ) <-> ( y e. x /\ y e. ran F ) ) | 
						
							| 27 |  | fvelrnb |  |-  ( F Fn Y -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 28 | 3 7 27 | 3syl |  |-  ( ph -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 30 | 3 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> Fun F ) | 
						
							| 32 |  | simprr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> z e. Y ) | 
						
							| 33 | 3 | fdmd |  |-  ( ph -> dom F = Y ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> dom F = Y ) | 
						
							| 35 | 32 34 | eleqtrrd |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> z e. dom F ) | 
						
							| 36 |  | fvimacnv |  |-  ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) | 
						
							| 37 | 31 35 36 | syl2anc |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) | 
						
							| 38 |  | cnvimass |  |-  ( `' F " x ) C_ dom F | 
						
							| 39 |  | funfvima2 |  |-  ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. ( F " ( `' F " x ) ) ) ) | 
						
							| 40 | 31 38 39 | sylancl |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. ( F " ( `' F " x ) ) ) ) | 
						
							| 41 |  | ssel |  |-  ( ( F " ( `' F " x ) ) C_ t -> ( ( F ` z ) e. ( F " ( `' F " x ) ) -> ( F ` z ) e. t ) ) | 
						
							| 42 | 41 | ad2antrl |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. ( F " ( `' F " x ) ) -> ( F ` z ) e. t ) ) | 
						
							| 43 | 40 42 | syld |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. t ) ) | 
						
							| 44 | 37 43 | sylbid |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. x -> ( F ` z ) e. t ) ) | 
						
							| 45 |  | eleq1 |  |-  ( ( F ` z ) = y -> ( ( F ` z ) e. x <-> y e. x ) ) | 
						
							| 46 |  | eleq1 |  |-  ( ( F ` z ) = y -> ( ( F ` z ) e. t <-> y e. t ) ) | 
						
							| 47 | 45 46 | imbi12d |  |-  ( ( F ` z ) = y -> ( ( ( F ` z ) e. x -> ( F ` z ) e. t ) <-> ( y e. x -> y e. t ) ) ) | 
						
							| 48 | 44 47 | syl5ibcom |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) | 
						
							| 49 | 48 | expr |  |-  ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( z e. Y -> ( ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) ) | 
						
							| 50 | 49 | rexlimdv |  |-  ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( E. z e. Y ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) | 
						
							| 51 | 29 50 | sylbid |  |-  ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( y e. ran F -> ( y e. x -> y e. t ) ) ) | 
						
							| 52 | 51 | impcomd |  |-  ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( ( y e. x /\ y e. ran F ) -> y e. t ) ) | 
						
							| 53 | 52 | adantrr |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( y e. x /\ y e. ran F ) -> y e. t ) ) | 
						
							| 54 | 26 53 | biimtrid |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( y e. ( x i^i ran F ) -> y e. t ) ) | 
						
							| 55 | 54 | ssrdv |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) C_ t ) | 
						
							| 56 |  | filss |  |-  ( ( L e. ( Fil ` X ) /\ ( ( x i^i ran F ) e. L /\ t C_ X /\ ( x i^i ran F ) C_ t ) ) -> t e. L ) | 
						
							| 57 | 5 24 25 55 56 | syl13anc |  |-  ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> t e. L ) | 
						
							| 58 | 57 | exp32 |  |-  ( ( ph /\ x e. L ) -> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 59 |  | imaeq2 |  |-  ( s = ( `' F " x ) -> ( F " s ) = ( F " ( `' F " x ) ) ) | 
						
							| 60 | 59 | sseq1d |  |-  ( s = ( `' F " x ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " x ) ) C_ t ) ) | 
						
							| 61 | 60 | imbi1d |  |-  ( s = ( `' F " x ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 62 | 58 61 | syl5ibrcom |  |-  ( ( ph /\ x e. L ) -> ( s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 63 | 62 | rexlimdva |  |-  ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |