Step |
Hyp |
Ref |
Expression |
1 |
|
fmfnfm.b |
|- ( ph -> B e. ( fBas ` Y ) ) |
2 |
|
fmfnfm.l |
|- ( ph -> L e. ( Fil ` X ) ) |
3 |
|
fmfnfm.f |
|- ( ph -> F : Y --> X ) |
4 |
|
fmfnfm.fm |
|- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
5 |
|
filin |
|- ( ( L e. ( Fil ` X ) /\ y e. L /\ z e. L ) -> ( y i^i z ) e. L ) |
6 |
5
|
3expb |
|- ( ( L e. ( Fil ` X ) /\ ( y e. L /\ z e. L ) ) -> ( y i^i z ) e. L ) |
7 |
2 6
|
sylan |
|- ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( y i^i z ) e. L ) |
8 |
|
ffun |
|- ( F : Y --> X -> Fun F ) |
9 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
10 |
|
imain |
|- ( Fun `' `' F -> ( `' F " ( y i^i z ) ) = ( ( `' F " y ) i^i ( `' F " z ) ) ) |
11 |
10
|
eqcomd |
|- ( Fun `' `' F -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) |
12 |
3 8 9 11
|
4syl |
|- ( ph -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) |
14 |
|
imaeq2 |
|- ( x = ( y i^i z ) -> ( `' F " x ) = ( `' F " ( y i^i z ) ) ) |
15 |
14
|
rspceeqv |
|- ( ( ( y i^i z ) e. L /\ ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) -> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) |
16 |
7 13 15
|
syl2anc |
|- ( ( ph /\ ( y e. L /\ z e. L ) ) -> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) |
17 |
|
ineq12 |
|- ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( s i^i t ) = ( ( `' F " y ) i^i ( `' F " z ) ) ) |
18 |
17
|
eqeq1d |
|- ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( ( s i^i t ) = ( `' F " x ) <-> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) ) |
19 |
18
|
rexbidv |
|- ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( E. x e. L ( s i^i t ) = ( `' F " x ) <-> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) ) |
20 |
16 19
|
syl5ibrcom |
|- ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) |
21 |
20
|
rexlimdvva |
|- ( ph -> ( E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) |
22 |
|
imaeq2 |
|- ( x = y -> ( `' F " x ) = ( `' F " y ) ) |
23 |
22
|
eqeq2d |
|- ( x = y -> ( s = ( `' F " x ) <-> s = ( `' F " y ) ) ) |
24 |
23
|
cbvrexvw |
|- ( E. x e. L s = ( `' F " x ) <-> E. y e. L s = ( `' F " y ) ) |
25 |
|
imaeq2 |
|- ( x = z -> ( `' F " x ) = ( `' F " z ) ) |
26 |
25
|
eqeq2d |
|- ( x = z -> ( t = ( `' F " x ) <-> t = ( `' F " z ) ) ) |
27 |
26
|
cbvrexvw |
|- ( E. x e. L t = ( `' F " x ) <-> E. z e. L t = ( `' F " z ) ) |
28 |
24 27
|
anbi12i |
|- ( ( E. x e. L s = ( `' F " x ) /\ E. x e. L t = ( `' F " x ) ) <-> ( E. y e. L s = ( `' F " y ) /\ E. z e. L t = ( `' F " z ) ) ) |
29 |
|
eqid |
|- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
30 |
29
|
elrnmpt |
|- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
31 |
30
|
elv |
|- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
32 |
29
|
elrnmpt |
|- ( t e. _V -> ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) ) |
33 |
32
|
elv |
|- ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) |
34 |
31 33
|
anbi12i |
|- ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) <-> ( E. x e. L s = ( `' F " x ) /\ E. x e. L t = ( `' F " x ) ) ) |
35 |
|
reeanv |
|- ( E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) <-> ( E. y e. L s = ( `' F " y ) /\ E. z e. L t = ( `' F " z ) ) ) |
36 |
28 34 35
|
3bitr4i |
|- ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) <-> E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) ) |
37 |
|
vex |
|- s e. _V |
38 |
37
|
inex1 |
|- ( s i^i t ) e. _V |
39 |
29
|
elrnmpt |
|- ( ( s i^i t ) e. _V -> ( ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) |
40 |
38 39
|
ax-mp |
|- ( ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( s i^i t ) = ( `' F " x ) ) |
41 |
21 36 40
|
3imtr4g |
|- ( ph -> ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) -> ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) ) ) |
42 |
41
|
ralrimivv |
|- ( ph -> A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
43 |
|
mptexg |
|- ( L e. ( Fil ` X ) -> ( x e. L |-> ( `' F " x ) ) e. _V ) |
44 |
|
rnexg |
|- ( ( x e. L |-> ( `' F " x ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
45 |
|
inficl |
|- ( ran ( x e. L |-> ( `' F " x ) ) e. _V -> ( A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) ) |
46 |
2 43 44 45
|
4syl |
|- ( ph -> ( A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) ) |
47 |
42 46
|
mpbid |
|- ( ph -> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) |