| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b |  |-  ( ph -> B e. ( fBas ` Y ) ) | 
						
							| 2 |  | fmfnfm.l |  |-  ( ph -> L e. ( Fil ` X ) ) | 
						
							| 3 |  | fmfnfm.f |  |-  ( ph -> F : Y --> X ) | 
						
							| 4 |  | fmfnfm.fm |  |-  ( ph -> ( ( X FilMap F ) ` B ) C_ L ) | 
						
							| 5 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ y e. L /\ z e. L ) -> ( y i^i z ) e. L ) | 
						
							| 6 | 5 | 3expb |  |-  ( ( L e. ( Fil ` X ) /\ ( y e. L /\ z e. L ) ) -> ( y i^i z ) e. L ) | 
						
							| 7 | 2 6 | sylan |  |-  ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( y i^i z ) e. L ) | 
						
							| 8 |  | ffun |  |-  ( F : Y --> X -> Fun F ) | 
						
							| 9 |  | funcnvcnv |  |-  ( Fun F -> Fun `' `' F ) | 
						
							| 10 |  | imain |  |-  ( Fun `' `' F -> ( `' F " ( y i^i z ) ) = ( ( `' F " y ) i^i ( `' F " z ) ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( Fun `' `' F -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) | 
						
							| 12 | 3 8 9 11 | 4syl |  |-  ( ph -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) | 
						
							| 14 |  | imaeq2 |  |-  ( x = ( y i^i z ) -> ( `' F " x ) = ( `' F " ( y i^i z ) ) ) | 
						
							| 15 | 14 | rspceeqv |  |-  ( ( ( y i^i z ) e. L /\ ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " ( y i^i z ) ) ) -> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) | 
						
							| 16 | 7 13 15 | syl2anc |  |-  ( ( ph /\ ( y e. L /\ z e. L ) ) -> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) | 
						
							| 17 |  | ineq12 |  |-  ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( s i^i t ) = ( ( `' F " y ) i^i ( `' F " z ) ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( ( s i^i t ) = ( `' F " x ) <-> ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> ( E. x e. L ( s i^i t ) = ( `' F " x ) <-> E. x e. L ( ( `' F " y ) i^i ( `' F " z ) ) = ( `' F " x ) ) ) | 
						
							| 20 | 16 19 | syl5ibrcom |  |-  ( ( ph /\ ( y e. L /\ z e. L ) ) -> ( ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) | 
						
							| 21 | 20 | rexlimdvva |  |-  ( ph -> ( E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) -> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) | 
						
							| 22 |  | imaeq2 |  |-  ( x = y -> ( `' F " x ) = ( `' F " y ) ) | 
						
							| 23 | 22 | eqeq2d |  |-  ( x = y -> ( s = ( `' F " x ) <-> s = ( `' F " y ) ) ) | 
						
							| 24 | 23 | cbvrexvw |  |-  ( E. x e. L s = ( `' F " x ) <-> E. y e. L s = ( `' F " y ) ) | 
						
							| 25 |  | imaeq2 |  |-  ( x = z -> ( `' F " x ) = ( `' F " z ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( x = z -> ( t = ( `' F " x ) <-> t = ( `' F " z ) ) ) | 
						
							| 27 | 26 | cbvrexvw |  |-  ( E. x e. L t = ( `' F " x ) <-> E. z e. L t = ( `' F " z ) ) | 
						
							| 28 | 24 27 | anbi12i |  |-  ( ( E. x e. L s = ( `' F " x ) /\ E. x e. L t = ( `' F " x ) ) <-> ( E. y e. L s = ( `' F " y ) /\ E. z e. L t = ( `' F " z ) ) ) | 
						
							| 29 |  | eqid |  |-  ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) | 
						
							| 30 | 29 | elrnmpt |  |-  ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) | 
						
							| 31 | 30 | elv |  |-  ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) | 
						
							| 32 | 29 | elrnmpt |  |-  ( t e. _V -> ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) ) | 
						
							| 33 | 32 | elv |  |-  ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) | 
						
							| 34 | 31 33 | anbi12i |  |-  ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) <-> ( E. x e. L s = ( `' F " x ) /\ E. x e. L t = ( `' F " x ) ) ) | 
						
							| 35 |  | reeanv |  |-  ( E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) <-> ( E. y e. L s = ( `' F " y ) /\ E. z e. L t = ( `' F " z ) ) ) | 
						
							| 36 | 28 34 35 | 3bitr4i |  |-  ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) <-> E. y e. L E. z e. L ( s = ( `' F " y ) /\ t = ( `' F " z ) ) ) | 
						
							| 37 |  | vex |  |-  s e. _V | 
						
							| 38 | 37 | inex1 |  |-  ( s i^i t ) e. _V | 
						
							| 39 | 29 | elrnmpt |  |-  ( ( s i^i t ) e. _V -> ( ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( s i^i t ) = ( `' F " x ) ) ) | 
						
							| 40 | 38 39 | ax-mp |  |-  ( ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( s i^i t ) = ( `' F " x ) ) | 
						
							| 41 | 21 36 40 | 3imtr4g |  |-  ( ph -> ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) -> ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 42 | 41 | ralrimivv |  |-  ( ph -> A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 43 |  | mptexg |  |-  ( L e. ( Fil ` X ) -> ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 44 |  | rnexg |  |-  ( ( x e. L |-> ( `' F " x ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 45 |  | inficl |  |-  ( ran ( x e. L |-> ( `' F " x ) ) e. _V -> ( A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 46 | 2 43 44 45 | 4syl |  |-  ( ph -> ( A. s e. ran ( x e. L |-> ( `' F " x ) ) A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 47 | 42 46 | mpbid |  |-  ( ph -> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) |