| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b |  |-  ( ph -> B e. ( fBas ` Y ) ) | 
						
							| 2 |  | fmfnfm.l |  |-  ( ph -> L e. ( Fil ` X ) ) | 
						
							| 3 |  | fmfnfm.f |  |-  ( ph -> F : Y --> X ) | 
						
							| 4 |  | fmfnfm.fm |  |-  ( ph -> ( ( X FilMap F ) ` B ) C_ L ) | 
						
							| 5 |  | filelss |  |-  ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) | 
						
							| 6 | 5 | ex |  |-  ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> ( t e. L -> t C_ X ) ) | 
						
							| 8 |  | mptexg |  |-  ( L e. ( Fil ` X ) -> ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 9 |  | rnexg |  |-  ( ( x e. L |-> ( `' F " x ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 10 | 8 9 | syl |  |-  ( L e. ( Fil ` X ) -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) | 
						
							| 12 |  | unexg |  |-  ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) | 
						
							| 13 | 1 11 12 | syl2anc |  |-  ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) | 
						
							| 14 |  | ssfii |  |-  ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 15 | 14 | unssbd |  |-  ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 16 | 13 15 | syl |  |-  ( ph -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ t e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( `' F " t ) = ( `' F " t ) | 
						
							| 19 |  | imaeq2 |  |-  ( x = t -> ( `' F " x ) = ( `' F " t ) ) | 
						
							| 20 | 19 | rspceeqv |  |-  ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) | 
						
							| 21 | 18 20 | mpan2 |  |-  ( t e. L -> E. x e. L ( `' F " t ) = ( `' F " x ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) | 
						
							| 23 |  | elfvdm |  |-  ( B e. ( fBas ` Y ) -> Y e. dom fBas ) | 
						
							| 24 | 1 23 | syl |  |-  ( ph -> Y e. dom fBas ) | 
						
							| 25 |  | cnvimass |  |-  ( `' F " t ) C_ dom F | 
						
							| 26 | 25 3 | fssdm |  |-  ( ph -> ( `' F " t ) C_ Y ) | 
						
							| 27 | 24 26 | ssexd |  |-  ( ph -> ( `' F " t ) e. _V ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ t e. L ) -> ( `' F " t ) e. _V ) | 
						
							| 29 |  | eqid |  |-  ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) | 
						
							| 30 | 29 | elrnmpt |  |-  ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) | 
						
							| 31 | 28 30 | syl |  |-  ( ( ph /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) | 
						
							| 32 | 22 31 | mpbird |  |-  ( ( ph /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 33 | 17 32 | sseldd |  |-  ( ( ph /\ t e. L ) -> ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 34 |  | ffun |  |-  ( F : Y --> X -> Fun F ) | 
						
							| 35 |  | ssid |  |-  ( `' F " t ) C_ ( `' F " t ) | 
						
							| 36 |  | funimass2 |  |-  ( ( Fun F /\ ( `' F " t ) C_ ( `' F " t ) ) -> ( F " ( `' F " t ) ) C_ t ) | 
						
							| 37 | 34 35 36 | sylancl |  |-  ( F : Y --> X -> ( F " ( `' F " t ) ) C_ t ) | 
						
							| 38 | 3 37 | syl |  |-  ( ph -> ( F " ( `' F " t ) ) C_ t ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) | 
						
							| 40 |  | imaeq2 |  |-  ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) | 
						
							| 41 | 40 | sseq1d |  |-  ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) | 
						
							| 42 | 41 | rspcev |  |-  ( ( ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) | 
						
							| 43 | 33 39 42 | syl2anc |  |-  ( ( ph /\ t e. L ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) | 
						
							| 44 | 43 | ex |  |-  ( ph -> ( t e. L -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) | 
						
							| 45 | 7 44 | jcad |  |-  ( ph -> ( t e. L -> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) | 
						
							| 46 |  | elfiun |  |-  ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) | 
						
							| 47 | 1 11 46 | syl2anc |  |-  ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) | 
						
							| 48 | 1 2 3 4 | fmfnfmlem1 |  |-  ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 49 | 1 2 3 4 | fmfnfmlem3 |  |-  ( ph -> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 50 | 49 | eleq2d |  |-  ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> s e. ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 51 | 29 | elrnmpt |  |-  ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) | 
						
							| 52 | 51 | elv |  |-  ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) | 
						
							| 53 | 1 2 3 4 | fmfnfmlem2 |  |-  ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 54 | 52 53 | biimtrid |  |-  ( ph -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 55 | 50 54 | sylbid |  |-  ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 56 | 49 | eleq2d |  |-  ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> w e. ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 57 | 29 | elrnmpt |  |-  ( w e. _V -> ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) ) | 
						
							| 58 | 57 | elv |  |-  ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) | 
						
							| 59 | 56 58 | bitrdi |  |-  ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) | 
						
							| 61 |  | fbssfi |  |-  ( ( B e. ( fBas ` Y ) /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) | 
						
							| 62 | 1 61 | sylan |  |-  ( ( ph /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) | 
						
							| 63 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> L e. ( Fil ` X ) ) | 
						
							| 64 | 2 | adantr |  |-  ( ( ph /\ ( s e. B /\ s C_ z ) ) -> L e. ( Fil ` X ) ) | 
						
							| 65 | 4 | adantr |  |-  ( ( ph /\ s e. B ) -> ( ( X FilMap F ) ` B ) C_ L ) | 
						
							| 66 |  | filtop |  |-  ( L e. ( Fil ` X ) -> X e. L ) | 
						
							| 67 | 2 66 | syl |  |-  ( ph -> X e. L ) | 
						
							| 68 | 67 1 3 | 3jca |  |-  ( ph -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ s e. B ) -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) | 
						
							| 70 |  | ssfg |  |-  ( B e. ( fBas ` Y ) -> B C_ ( Y filGen B ) ) | 
						
							| 71 | 1 70 | syl |  |-  ( ph -> B C_ ( Y filGen B ) ) | 
						
							| 72 | 71 | sselda |  |-  ( ( ph /\ s e. B ) -> s e. ( Y filGen B ) ) | 
						
							| 73 |  | eqid |  |-  ( Y filGen B ) = ( Y filGen B ) | 
						
							| 74 | 73 | imaelfm |  |-  ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ s e. ( Y filGen B ) ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) | 
						
							| 75 | 69 72 74 | syl2anc |  |-  ( ( ph /\ s e. B ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) | 
						
							| 76 | 65 75 | sseldd |  |-  ( ( ph /\ s e. B ) -> ( F " s ) e. L ) | 
						
							| 77 | 76 | adantrr |  |-  ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( F " s ) e. L ) | 
						
							| 78 | 64 77 | jca |  |-  ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) ) | 
						
							| 79 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) | 
						
							| 80 | 79 | 3expa |  |-  ( ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) | 
						
							| 81 | 78 80 | sylan |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) e. L ) | 
						
							| 83 |  | simprr |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t C_ X ) | 
						
							| 84 |  | elin |  |-  ( w e. ( ( F " s ) i^i x ) <-> ( w e. ( F " s ) /\ w e. x ) ) | 
						
							| 85 | 3 34 | syl |  |-  ( ph -> Fun F ) | 
						
							| 86 |  | fvelima |  |-  ( ( Fun F /\ w e. ( F " s ) ) -> E. y e. s ( F ` y ) = w ) | 
						
							| 87 | 86 | ex |  |-  ( Fun F -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) | 
						
							| 88 | 85 87 | syl |  |-  ( ph -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) | 
						
							| 89 | 88 | ad3antrrr |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) | 
						
							| 90 | 85 | ad3antrrr |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> Fun F ) | 
						
							| 91 |  | simplrr |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> s C_ z ) | 
						
							| 92 |  | simprl |  |-  ( ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. s ) | 
						
							| 93 |  | ssel2 |  |-  ( ( s C_ z /\ y e. s ) -> y e. z ) | 
						
							| 94 | 91 92 93 | syl2an |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. z ) | 
						
							| 95 | 85 | ad2antrr |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> Fun F ) | 
						
							| 96 |  | fbelss |  |-  ( ( B e. ( fBas ` Y ) /\ s e. B ) -> s C_ Y ) | 
						
							| 97 | 1 96 | sylan |  |-  ( ( ph /\ s e. B ) -> s C_ Y ) | 
						
							| 98 | 3 | fdmd |  |-  ( ph -> dom F = Y ) | 
						
							| 99 | 98 | adantr |  |-  ( ( ph /\ s e. B ) -> dom F = Y ) | 
						
							| 100 | 97 99 | sseqtrrd |  |-  ( ( ph /\ s e. B ) -> s C_ dom F ) | 
						
							| 101 | 100 | adantrr |  |-  ( ( ph /\ ( s e. B /\ s C_ z ) ) -> s C_ dom F ) | 
						
							| 102 | 101 | sselda |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> y e. dom F ) | 
						
							| 103 |  | fvimacnv |  |-  ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) | 
						
							| 104 | 95 102 103 | syl2anc |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) | 
						
							| 105 | 104 | biimpd |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x -> y e. ( `' F " x ) ) ) | 
						
							| 106 | 105 | impr |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. ( `' F " x ) ) | 
						
							| 107 | 106 | ad2ant2rl |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( `' F " x ) ) | 
						
							| 108 | 94 107 | elind |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( z i^i ( `' F " x ) ) ) | 
						
							| 109 |  | inss2 |  |-  ( z i^i ( `' F " x ) ) C_ ( `' F " x ) | 
						
							| 110 |  | cnvimass |  |-  ( `' F " x ) C_ dom F | 
						
							| 111 | 109 110 | sstri |  |-  ( z i^i ( `' F " x ) ) C_ dom F | 
						
							| 112 |  | funfvima2 |  |-  ( ( Fun F /\ ( z i^i ( `' F " x ) ) C_ dom F ) -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 113 | 111 112 | mpan2 |  |-  ( Fun F -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 114 | 90 108 113 | sylc |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) | 
						
							| 115 | 114 | anassrs |  |-  ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) | 
						
							| 116 | 115 | expr |  |-  ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 117 |  | eleq1 |  |-  ( ( F ` y ) = w -> ( ( F ` y ) e. x <-> w e. x ) ) | 
						
							| 118 |  | eleq1 |  |-  ( ( F ` y ) = w -> ( ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) <-> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 119 | 117 118 | imbi12d |  |-  ( ( F ` y ) = w -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) <-> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) | 
						
							| 120 | 116 119 | syl5ibcom |  |-  ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) | 
						
							| 121 | 120 | rexlimdva |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( E. y e. s ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) | 
						
							| 122 | 89 121 | syld |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) | 
						
							| 123 | 122 | impd |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( ( w e. ( F " s ) /\ w e. x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 124 | 84 123 | biimtrid |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 125 | 124 | adantrl |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) | 
						
							| 126 | 125 | ssrdv |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ ( F " ( z i^i ( `' F " x ) ) ) ) | 
						
							| 127 |  | simprl |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) | 
						
							| 128 | 126 127 | sstrd |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ t ) | 
						
							| 129 |  | filss |  |-  ( ( L e. ( Fil ` X ) /\ ( ( ( F " s ) i^i x ) e. L /\ t C_ X /\ ( ( F " s ) i^i x ) C_ t ) ) -> t e. L ) | 
						
							| 130 | 63 82 83 128 129 | syl13anc |  |-  ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t e. L ) | 
						
							| 131 | 130 | exp32 |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 132 |  | ineq2 |  |-  ( w = ( `' F " x ) -> ( z i^i w ) = ( z i^i ( `' F " x ) ) ) | 
						
							| 133 | 132 | imaeq2d |  |-  ( w = ( `' F " x ) -> ( F " ( z i^i w ) ) = ( F " ( z i^i ( `' F " x ) ) ) ) | 
						
							| 134 | 133 | sseq1d |  |-  ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t <-> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) ) | 
						
							| 135 | 134 | imbi1d |  |-  ( w = ( `' F " x ) -> ( ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 136 | 131 135 | syl5ibrcom |  |-  ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 137 | 136 | rexlimdva |  |-  ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 138 | 137 | rexlimdvaa |  |-  ( ph -> ( E. s e. B s C_ z -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) ) | 
						
							| 139 | 138 | imp |  |-  ( ( ph /\ E. s e. B s C_ z ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 140 | 62 139 | syldan |  |-  ( ( ph /\ z e. ( fi ` B ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 141 | 60 140 | sylbid |  |-  ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 142 | 141 | impr |  |-  ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 143 |  | imaeq2 |  |-  ( s = ( z i^i w ) -> ( F " s ) = ( F " ( z i^i w ) ) ) | 
						
							| 144 | 143 | sseq1d |  |-  ( s = ( z i^i w ) -> ( ( F " s ) C_ t <-> ( F " ( z i^i w ) ) C_ t ) ) | 
						
							| 145 | 144 | imbi1d |  |-  ( s = ( z i^i w ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 146 | 142 145 | syl5ibrcom |  |-  ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 147 | 146 | rexlimdvva |  |-  ( ph -> ( E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 148 | 48 55 147 | 3jaod |  |-  ( ph -> ( ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 149 | 47 148 | sylbid |  |-  ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 150 | 149 | rexlimdv |  |-  ( ph -> ( E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 151 | 150 | impcomd |  |-  ( ph -> ( ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) -> t e. L ) ) | 
						
							| 152 | 45 151 | impbid |  |-  ( ph -> ( t e. L <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |