| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filfbas |  |-  ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) | 
						
							| 2 |  | f1oi |  |-  ( _I |` X ) : X -1-1-onto-> X | 
						
							| 3 |  | f1ofo |  |-  ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( _I |` X ) : X -onto-> X | 
						
							| 5 |  | eqid |  |-  ( X filGen F ) = ( X filGen F ) | 
						
							| 6 | 5 | elfm3 |  |-  ( ( F e. ( fBas ` X ) /\ ( _I |` X ) : X -onto-> X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) | 
						
							| 7 | 1 4 6 | sylancl |  |-  ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) | 
						
							| 8 |  | fgfil |  |-  ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) | 
						
							| 9 | 8 | rexeqdv |  |-  ( F e. ( Fil ` X ) -> ( E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) <-> E. s e. F t = ( ( _I |` X ) " s ) ) ) | 
						
							| 10 |  | filelss |  |-  ( ( F e. ( Fil ` X ) /\ s e. F ) -> s C_ X ) | 
						
							| 11 |  | resiima |  |-  ( s C_ X -> ( ( _I |` X ) " s ) = s ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( ( _I |` X ) " s ) = s ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> t = s ) ) | 
						
							| 14 |  | equcom |  |-  ( s = t <-> t = s ) | 
						
							| 15 | 13 14 | bitr4di |  |-  ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> s = t ) ) | 
						
							| 16 | 15 | rexbidva |  |-  ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> E. s e. F s = t ) ) | 
						
							| 17 |  | risset |  |-  ( t e. F <-> E. s e. F s = t ) | 
						
							| 18 | 16 17 | bitr4di |  |-  ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> t e. F ) ) | 
						
							| 19 | 7 9 18 | 3bitrd |  |-  ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> t e. F ) ) | 
						
							| 20 | 19 | eqrdv |  |-  ( F e. ( Fil ` X ) -> ( ( X FilMap ( _I |` X ) ) ` F ) = F ) |