Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
|- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
2 |
|
f1oi |
|- ( _I |` X ) : X -1-1-onto-> X |
3 |
|
f1ofo |
|- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X ) |
4 |
2 3
|
ax-mp |
|- ( _I |` X ) : X -onto-> X |
5 |
|
eqid |
|- ( X filGen F ) = ( X filGen F ) |
6 |
5
|
elfm3 |
|- ( ( F e. ( fBas ` X ) /\ ( _I |` X ) : X -onto-> X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) |
7 |
1 4 6
|
sylancl |
|- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) |
8 |
|
fgfil |
|- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |
9 |
8
|
rexeqdv |
|- ( F e. ( Fil ` X ) -> ( E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) <-> E. s e. F t = ( ( _I |` X ) " s ) ) ) |
10 |
|
filelss |
|- ( ( F e. ( Fil ` X ) /\ s e. F ) -> s C_ X ) |
11 |
|
resiima |
|- ( s C_ X -> ( ( _I |` X ) " s ) = s ) |
12 |
10 11
|
syl |
|- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( ( _I |` X ) " s ) = s ) |
13 |
12
|
eqeq2d |
|- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> t = s ) ) |
14 |
|
equcom |
|- ( s = t <-> t = s ) |
15 |
13 14
|
bitr4di |
|- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> s = t ) ) |
16 |
15
|
rexbidva |
|- ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> E. s e. F s = t ) ) |
17 |
|
risset |
|- ( t e. F <-> E. s e. F s = t ) |
18 |
16 17
|
bitr4di |
|- ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> t e. F ) ) |
19 |
7 9 18
|
3bitrd |
|- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> t e. F ) ) |
20 |
19
|
eqrdv |
|- ( F e. ( Fil ` X ) -> ( ( X FilMap ( _I |` X ) ) ` F ) = F ) |