| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmlaomn0 |
|- ( x e. _om -> (/) e/ ( Fmla ` x ) ) |
| 2 |
|
df-nel |
|- ( (/) e/ ( Fmla ` x ) <-> -. (/) e. ( Fmla ` x ) ) |
| 3 |
1 2
|
sylib |
|- ( x e. _om -> -. (/) e. ( Fmla ` x ) ) |
| 4 |
3
|
nrex |
|- -. E. x e. _om (/) e. ( Fmla ` x ) |
| 5 |
|
df-nel |
|- ( (/) e/ ( Fmla ` _om ) <-> -. (/) e. ( Fmla ` _om ) ) |
| 6 |
|
fmla |
|- ( Fmla ` _om ) = U_ x e. _om ( Fmla ` x ) |
| 7 |
6
|
eleq2i |
|- ( (/) e. ( Fmla ` _om ) <-> (/) e. U_ x e. _om ( Fmla ` x ) ) |
| 8 |
|
eliun |
|- ( (/) e. U_ x e. _om ( Fmla ` x ) <-> E. x e. _om (/) e. ( Fmla ` x ) ) |
| 9 |
7 8
|
bitri |
|- ( (/) e. ( Fmla ` _om ) <-> E. x e. _om (/) e. ( Fmla ` x ) ) |
| 10 |
5 9
|
xchbinx |
|- ( (/) e/ ( Fmla ` _om ) <-> -. E. x e. _om (/) e. ( Fmla ` x ) ) |
| 11 |
4 10
|
mpbir |
|- (/) e/ ( Fmla ` _om ) |