Metamath Proof Explorer


Theorem fmpo

Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)

Ref Expression
Hypothesis fmpo.1
|- F = ( x e. A , y e. B |-> C )
Assertion fmpo
|- ( A. x e. A A. y e. B C e. D <-> F : ( A X. B ) --> D )

Proof

Step Hyp Ref Expression
1 fmpo.1
 |-  F = ( x e. A , y e. B |-> C )
2 1 fmpox
 |-  ( A. x e. A A. y e. B C e. D <-> F : U_ x e. A ( { x } X. B ) --> D )
3 iunxpconst
 |-  U_ x e. A ( { x } X. B ) = ( A X. B )
4 3 feq2i
 |-  ( F : U_ x e. A ( { x } X. B ) --> D <-> F : ( A X. B ) --> D )
5 2 4 bitri
 |-  ( A. x e. A A. y e. B C e. D <-> F : ( A X. B ) --> D )