Step |
Hyp |
Ref |
Expression |
1 |
|
fmpoco.1 |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> R e. C ) |
2 |
|
fmpoco.2 |
|- ( ph -> F = ( x e. A , y e. B |-> R ) ) |
3 |
|
fmpoco.3 |
|- ( ph -> G = ( z e. C |-> S ) ) |
4 |
|
fmpoco.4 |
|- ( z = R -> S = T ) |
5 |
1
|
ralrimivva |
|- ( ph -> A. x e. A A. y e. B R e. C ) |
6 |
|
eqid |
|- ( x e. A , y e. B |-> R ) = ( x e. A , y e. B |-> R ) |
7 |
6
|
fmpo |
|- ( A. x e. A A. y e. B R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
8 |
5 7
|
sylib |
|- ( ph -> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
9 |
|
nfcv |
|- F/_ u R |
10 |
|
nfcv |
|- F/_ v R |
11 |
|
nfcv |
|- F/_ x v |
12 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ R |
13 |
11 12
|
nfcsbw |
|- F/_ x [_ v / y ]_ [_ u / x ]_ R |
14 |
|
nfcsb1v |
|- F/_ y [_ v / y ]_ [_ u / x ]_ R |
15 |
|
csbeq1a |
|- ( x = u -> R = [_ u / x ]_ R ) |
16 |
|
csbeq1a |
|- ( y = v -> [_ u / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
17 |
15 16
|
sylan9eq |
|- ( ( x = u /\ y = v ) -> R = [_ v / y ]_ [_ u / x ]_ R ) |
18 |
9 10 13 14 17
|
cbvmpo |
|- ( x e. A , y e. B |-> R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
19 |
|
vex |
|- u e. _V |
20 |
|
vex |
|- v e. _V |
21 |
19 20
|
op2ndd |
|- ( w = <. u , v >. -> ( 2nd ` w ) = v ) |
22 |
21
|
csbeq1d |
|- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
23 |
19 20
|
op1std |
|- ( w = <. u , v >. -> ( 1st ` w ) = u ) |
24 |
23
|
csbeq1d |
|- ( w = <. u , v >. -> [_ ( 1st ` w ) / x ]_ R = [_ u / x ]_ R ) |
25 |
24
|
csbeq2dv |
|- ( w = <. u , v >. -> [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
26 |
22 25
|
eqtrd |
|- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
27 |
26
|
mpompt |
|- ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
28 |
18 27
|
eqtr4i |
|- ( x e. A , y e. B |-> R ) = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
29 |
28
|
fmpt |
|- ( A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
30 |
8 29
|
sylibr |
|- ( ph -> A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C ) |
31 |
2 28
|
eqtrdi |
|- ( ph -> F = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) ) |
32 |
30 31 3
|
fmptcos |
|- ( ph -> ( G o. F ) = ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) ) |
33 |
26
|
csbeq1d |
|- ( w = <. u , v >. -> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
34 |
33
|
mpompt |
|- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
35 |
|
nfcv |
|- F/_ u [_ R / z ]_ S |
36 |
|
nfcv |
|- F/_ v [_ R / z ]_ S |
37 |
|
nfcv |
|- F/_ x S |
38 |
13 37
|
nfcsbw |
|- F/_ x [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
39 |
|
nfcv |
|- F/_ y S |
40 |
14 39
|
nfcsbw |
|- F/_ y [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
41 |
17
|
csbeq1d |
|- ( ( x = u /\ y = v ) -> [_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
42 |
35 36 38 40 41
|
cbvmpo |
|- ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
43 |
34 42
|
eqtr4i |
|- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> [_ R / z ]_ S ) |
44 |
1
|
3impb |
|- ( ( ph /\ x e. A /\ y e. B ) -> R e. C ) |
45 |
|
nfcvd |
|- ( R e. C -> F/_ z T ) |
46 |
45 4
|
csbiegf |
|- ( R e. C -> [_ R / z ]_ S = T ) |
47 |
44 46
|
syl |
|- ( ( ph /\ x e. A /\ y e. B ) -> [_ R / z ]_ S = T ) |
48 |
47
|
mpoeq3dva |
|- ( ph -> ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
49 |
43 48
|
eqtrid |
|- ( ph -> ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
50 |
32 49
|
eqtrd |
|- ( ph -> ( G o. F ) = ( x e. A , y e. B |-> T ) ) |