| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmpoco.1 |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> R e. C ) |
| 2 |
|
fmpoco.2 |
|- ( ph -> F = ( x e. A , y e. B |-> R ) ) |
| 3 |
|
fmpoco.3 |
|- ( ph -> G = ( z e. C |-> S ) ) |
| 4 |
|
fmpoco.4 |
|- ( z = R -> S = T ) |
| 5 |
1
|
ralrimivva |
|- ( ph -> A. x e. A A. y e. B R e. C ) |
| 6 |
|
eqid |
|- ( x e. A , y e. B |-> R ) = ( x e. A , y e. B |-> R ) |
| 7 |
6
|
fmpo |
|- ( A. x e. A A. y e. B R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 8 |
5 7
|
sylib |
|- ( ph -> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 9 |
|
nfcv |
|- F/_ u R |
| 10 |
|
nfcv |
|- F/_ v R |
| 11 |
|
nfcv |
|- F/_ x v |
| 12 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ R |
| 13 |
11 12
|
nfcsbw |
|- F/_ x [_ v / y ]_ [_ u / x ]_ R |
| 14 |
|
nfcsb1v |
|- F/_ y [_ v / y ]_ [_ u / x ]_ R |
| 15 |
|
csbeq1a |
|- ( x = u -> R = [_ u / x ]_ R ) |
| 16 |
|
csbeq1a |
|- ( y = v -> [_ u / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
| 17 |
15 16
|
sylan9eq |
|- ( ( x = u /\ y = v ) -> R = [_ v / y ]_ [_ u / x ]_ R ) |
| 18 |
9 10 13 14 17
|
cbvmpo |
|- ( x e. A , y e. B |-> R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
| 19 |
|
vex |
|- u e. _V |
| 20 |
|
vex |
|- v e. _V |
| 21 |
19 20
|
op2ndd |
|- ( w = <. u , v >. -> ( 2nd ` w ) = v ) |
| 22 |
21
|
csbeq1d |
|- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
| 23 |
19 20
|
op1std |
|- ( w = <. u , v >. -> ( 1st ` w ) = u ) |
| 24 |
23
|
csbeq1d |
|- ( w = <. u , v >. -> [_ ( 1st ` w ) / x ]_ R = [_ u / x ]_ R ) |
| 25 |
24
|
csbeq2dv |
|- ( w = <. u , v >. -> [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
| 26 |
22 25
|
eqtrd |
|- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
| 27 |
26
|
mpompt |
|- ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
| 28 |
18 27
|
eqtr4i |
|- ( x e. A , y e. B |-> R ) = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
| 29 |
28
|
fmpt |
|- ( A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 30 |
8 29
|
sylibr |
|- ( ph -> A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C ) |
| 31 |
2 28
|
eqtrdi |
|- ( ph -> F = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) ) |
| 32 |
30 31 3
|
fmptcos |
|- ( ph -> ( G o. F ) = ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) ) |
| 33 |
26
|
csbeq1d |
|- ( w = <. u , v >. -> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 34 |
33
|
mpompt |
|- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 35 |
|
nfcv |
|- F/_ u [_ R / z ]_ S |
| 36 |
|
nfcv |
|- F/_ v [_ R / z ]_ S |
| 37 |
|
nfcv |
|- F/_ x S |
| 38 |
13 37
|
nfcsbw |
|- F/_ x [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
| 39 |
|
nfcv |
|- F/_ y S |
| 40 |
14 39
|
nfcsbw |
|- F/_ y [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
| 41 |
17
|
csbeq1d |
|- ( ( x = u /\ y = v ) -> [_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 42 |
35 36 38 40 41
|
cbvmpo |
|- ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 43 |
34 42
|
eqtr4i |
|- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> [_ R / z ]_ S ) |
| 44 |
1
|
3impb |
|- ( ( ph /\ x e. A /\ y e. B ) -> R e. C ) |
| 45 |
|
nfcvd |
|- ( R e. C -> F/_ z T ) |
| 46 |
45 4
|
csbiegf |
|- ( R e. C -> [_ R / z ]_ S = T ) |
| 47 |
44 46
|
syl |
|- ( ( ph /\ x e. A /\ y e. B ) -> [_ R / z ]_ S = T ) |
| 48 |
47
|
mpoeq3dva |
|- ( ph -> ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
| 49 |
43 48
|
eqtrid |
|- ( ph -> ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
| 50 |
32 49
|
eqtrd |
|- ( ph -> ( G o. F ) = ( x e. A , y e. B |-> T ) ) |