| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmpox.1 |
|- F = ( x e. A , y e. B |-> C ) |
| 2 |
|
vex |
|- z e. _V |
| 3 |
|
vex |
|- w e. _V |
| 4 |
2 3
|
op1std |
|- ( v = <. z , w >. -> ( 1st ` v ) = z ) |
| 5 |
4
|
csbeq1d |
|- ( v = <. z , w >. -> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ ( 2nd ` v ) / y ]_ C ) |
| 6 |
2 3
|
op2ndd |
|- ( v = <. z , w >. -> ( 2nd ` v ) = w ) |
| 7 |
6
|
csbeq1d |
|- ( v = <. z , w >. -> [_ ( 2nd ` v ) / y ]_ C = [_ w / y ]_ C ) |
| 8 |
7
|
csbeq2dv |
|- ( v = <. z , w >. -> [_ z / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
| 9 |
5 8
|
eqtrd |
|- ( v = <. z , w >. -> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
| 10 |
9
|
eleq1d |
|- ( v = <. z , w >. -> ( [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 11 |
10
|
raliunxp |
|- ( A. v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) |
| 12 |
|
nfv |
|- F/ z ( ( x e. A /\ y e. B ) /\ v = C ) |
| 13 |
|
nfv |
|- F/ w ( ( x e. A /\ y e. B ) /\ v = C ) |
| 14 |
|
nfv |
|- F/ x z e. A |
| 15 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ B |
| 16 |
15
|
nfcri |
|- F/ x w e. [_ z / x ]_ B |
| 17 |
14 16
|
nfan |
|- F/ x ( z e. A /\ w e. [_ z / x ]_ B ) |
| 18 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ [_ w / y ]_ C |
| 19 |
18
|
nfeq2 |
|- F/ x v = [_ z / x ]_ [_ w / y ]_ C |
| 20 |
17 19
|
nfan |
|- F/ x ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) |
| 21 |
|
nfv |
|- F/ y ( z e. A /\ w e. [_ z / x ]_ B ) |
| 22 |
|
nfcv |
|- F/_ y z |
| 23 |
|
nfcsb1v |
|- F/_ y [_ w / y ]_ C |
| 24 |
22 23
|
nfcsbw |
|- F/_ y [_ z / x ]_ [_ w / y ]_ C |
| 25 |
24
|
nfeq2 |
|- F/ y v = [_ z / x ]_ [_ w / y ]_ C |
| 26 |
21 25
|
nfan |
|- F/ y ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) |
| 27 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
| 28 |
27
|
adantr |
|- ( ( x = z /\ y = w ) -> ( x e. A <-> z e. A ) ) |
| 29 |
|
eleq1w |
|- ( y = w -> ( y e. B <-> w e. B ) ) |
| 30 |
|
csbeq1a |
|- ( x = z -> B = [_ z / x ]_ B ) |
| 31 |
30
|
eleq2d |
|- ( x = z -> ( w e. B <-> w e. [_ z / x ]_ B ) ) |
| 32 |
29 31
|
sylan9bbr |
|- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. [_ z / x ]_ B ) ) |
| 33 |
28 32
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. [_ z / x ]_ B ) ) ) |
| 34 |
|
csbeq1a |
|- ( y = w -> C = [_ w / y ]_ C ) |
| 35 |
|
csbeq1a |
|- ( x = z -> [_ w / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
| 36 |
34 35
|
sylan9eqr |
|- ( ( x = z /\ y = w ) -> C = [_ z / x ]_ [_ w / y ]_ C ) |
| 37 |
36
|
eqeq2d |
|- ( ( x = z /\ y = w ) -> ( v = C <-> v = [_ z / x ]_ [_ w / y ]_ C ) ) |
| 38 |
33 37
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ v = C ) <-> ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) ) ) |
| 39 |
12 13 20 26 38
|
cbvoprab12 |
|- { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) } |
| 40 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } |
| 41 |
|
df-mpo |
|- ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) } |
| 42 |
39 40 41
|
3eqtr4i |
|- ( x e. A , y e. B |-> C ) = ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) |
| 43 |
9
|
mpomptx |
|- ( v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) |-> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C ) = ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) |
| 44 |
42 1 43
|
3eqtr4i |
|- F = ( v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) |-> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C ) |
| 45 |
44
|
fmpt |
|- ( A. v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 46 |
11 45
|
bitr3i |
|- ( A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 47 |
|
nfv |
|- F/ z A. y e. B C e. D |
| 48 |
18
|
nfel1 |
|- F/ x [_ z / x ]_ [_ w / y ]_ C e. D |
| 49 |
15 48
|
nfralw |
|- F/ x A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D |
| 50 |
|
nfv |
|- F/ w C e. D |
| 51 |
23
|
nfel1 |
|- F/ y [_ w / y ]_ C e. D |
| 52 |
34
|
eleq1d |
|- ( y = w -> ( C e. D <-> [_ w / y ]_ C e. D ) ) |
| 53 |
50 51 52
|
cbvralw |
|- ( A. y e. B C e. D <-> A. w e. B [_ w / y ]_ C e. D ) |
| 54 |
35
|
eleq1d |
|- ( x = z -> ( [_ w / y ]_ C e. D <-> [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 55 |
30 54
|
raleqbidv |
|- ( x = z -> ( A. w e. B [_ w / y ]_ C e. D <-> A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 56 |
53 55
|
bitrid |
|- ( x = z -> ( A. y e. B C e. D <-> A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 57 |
47 49 56
|
cbvralw |
|- ( A. x e. A A. y e. B C e. D <-> A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) |
| 58 |
|
nfcv |
|- F/_ z ( { x } X. B ) |
| 59 |
|
nfcv |
|- F/_ x { z } |
| 60 |
59 15
|
nfxp |
|- F/_ x ( { z } X. [_ z / x ]_ B ) |
| 61 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
| 62 |
61 30
|
xpeq12d |
|- ( x = z -> ( { x } X. B ) = ( { z } X. [_ z / x ]_ B ) ) |
| 63 |
58 60 62
|
cbviun |
|- U_ x e. A ( { x } X. B ) = U_ z e. A ( { z } X. [_ z / x ]_ B ) |
| 64 |
63
|
feq2i |
|- ( F : U_ x e. A ( { x } X. B ) --> D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 65 |
46 57 64
|
3bitr4i |
|- ( A. x e. A A. y e. B C e. D <-> F : U_ x e. A ( { x } X. B ) --> D ) |