Metamath Proof Explorer


Theorem fmpt3d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses fmpt3d.1
|- ( ph -> F = ( x e. A |-> B ) )
fmpt3d.2
|- ( ( ph /\ x e. A ) -> B e. C )
Assertion fmpt3d
|- ( ph -> F : A --> C )

Proof

Step Hyp Ref Expression
1 fmpt3d.1
 |-  ( ph -> F = ( x e. A |-> B ) )
2 fmpt3d.2
 |-  ( ( ph /\ x e. A ) -> B e. C )
3 2 fmpttd
 |-  ( ph -> ( x e. A |-> B ) : A --> C )
4 1 feq1d
 |-  ( ph -> ( F : A --> C <-> ( x e. A |-> B ) : A --> C ) )
5 3 4 mpbird
 |-  ( ph -> F : A --> C )