Metamath Proof Explorer


Theorem fmptd2f

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptd2f.1
|- F/ x ph
fmptd2f.2
|- ( ( ph /\ x e. A ) -> B e. C )
Assertion fmptd2f
|- ( ph -> ( x e. A |-> B ) : A --> C )

Proof

Step Hyp Ref Expression
1 fmptd2f.1
 |-  F/ x ph
2 fmptd2f.2
 |-  ( ( ph /\ x e. A ) -> B e. C )
3 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
4 1 2 3 fmptdf
 |-  ( ph -> ( x e. A |-> B ) : A --> C )