Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmptdf.1 | |- F/ x ph |
|
fmptdf.2 | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
fmptdf.3 | |- F = ( x e. A |-> B ) |
||
Assertion | fmptdf | |- ( ph -> F : A --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdf.1 | |- F/ x ph |
|
2 | fmptdf.2 | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
3 | fmptdf.3 | |- F = ( x e. A |-> B ) |
|
4 | 2 | ex | |- ( ph -> ( x e. A -> B e. C ) ) |
5 | 1 4 | ralrimi | |- ( ph -> A. x e. A B e. C ) |
6 | 3 | fmpt | |- ( A. x e. A B e. C <-> F : A --> C ) |
7 | 5 6 | sylib | |- ( ph -> F : A --> C ) |