Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptdf.1 | |- F/ x ph |
|
| fmptdf.2 | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
| fmptdf.3 | |- F = ( x e. A |-> B ) |
||
| Assertion | fmptdf | |- ( ph -> F : A --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | |- F/ x ph |
|
| 2 | fmptdf.2 | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
| 3 | fmptdf.3 | |- F = ( x e. A |-> B ) |
|
| 4 | 2 | ex | |- ( ph -> ( x e. A -> B e. C ) ) |
| 5 | 1 4 | ralrimi | |- ( ph -> A. x e. A B e. C ) |
| 6 | 3 | fmpt | |- ( A. x e. A B e. C <-> F : A --> C ) |
| 7 | 5 6 | sylib | |- ( ph -> F : A --> C ) |