Metamath Proof Explorer


Theorem fmptdf

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses fmptdf.1
|- F/ x ph
fmptdf.2
|- ( ( ph /\ x e. A ) -> B e. C )
fmptdf.3
|- F = ( x e. A |-> B )
Assertion fmptdf
|- ( ph -> F : A --> C )

Proof

Step Hyp Ref Expression
1 fmptdf.1
 |-  F/ x ph
2 fmptdf.2
 |-  ( ( ph /\ x e. A ) -> B e. C )
3 fmptdf.3
 |-  F = ( x e. A |-> B )
4 2 ex
 |-  ( ph -> ( x e. A -> B e. C ) )
5 1 4 ralrimi
 |-  ( ph -> A. x e. A B e. C )
6 3 fmpt
 |-  ( A. x e. A B e. C <-> F : A --> C )
7 5 6 sylib
 |-  ( ph -> F : A --> C )