Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmptdff.1 | |- F/ x ph |
|
fmptdff.2 | |- F/_ x A |
||
fmptdff.3 | |- F/_ x C |
||
fmptdff.4 | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
fmptdff.5 | |- F = ( x e. A |-> B ) |
||
Assertion | fmptdff | |- ( ph -> F : A --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdff.1 | |- F/ x ph |
|
2 | fmptdff.2 | |- F/_ x A |
|
3 | fmptdff.3 | |- F/_ x C |
|
4 | fmptdff.4 | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
5 | fmptdff.5 | |- F = ( x e. A |-> B ) |
|
6 | 1 4 | ralrimia | |- ( ph -> A. x e. A B e. C ) |
7 | 2 3 5 | fmptff | |- ( A. x e. A B e. C <-> F : A --> C ) |
8 | 6 7 | sylib | |- ( ph -> F : A --> C ) |