Step |
Hyp |
Ref |
Expression |
1 |
|
fmptff.1 |
|- F/_ x A |
2 |
|
fmptff.2 |
|- F/_ x B |
3 |
|
fmptff.3 |
|- F = ( x e. A |-> C ) |
4 |
|
nfcv |
|- F/_ y A |
5 |
|
nfv |
|- F/ y C e. B |
6 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
7 |
6 2
|
nfel |
|- F/ x [_ y / x ]_ C e. B |
8 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
9 |
8
|
eleq1d |
|- ( x = y -> ( C e. B <-> [_ y / x ]_ C e. B ) ) |
10 |
1 4 5 7 9
|
cbvralfw |
|- ( A. x e. A C e. B <-> A. y e. A [_ y / x ]_ C e. B ) |
11 |
|
nfcv |
|- F/_ y C |
12 |
1 4 11 6 8
|
cbvmptf |
|- ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C ) |
13 |
3 12
|
eqtri |
|- F = ( y e. A |-> [_ y / x ]_ C ) |
14 |
13
|
fmpt |
|- ( A. y e. A [_ y / x ]_ C e. B <-> F : A --> B ) |
15 |
10 14
|
bitri |
|- ( A. x e. A C e. B <-> F : A --> B ) |