Metamath Proof Explorer


Theorem fmptff

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptff.1
|- F/_ x A
fmptff.2
|- F/_ x B
fmptff.3
|- F = ( x e. A |-> C )
Assertion fmptff
|- ( A. x e. A C e. B <-> F : A --> B )

Proof

Step Hyp Ref Expression
1 fmptff.1
 |-  F/_ x A
2 fmptff.2
 |-  F/_ x B
3 fmptff.3
 |-  F = ( x e. A |-> C )
4 nfcv
 |-  F/_ y A
5 nfv
 |-  F/ y C e. B
6 nfcsb1v
 |-  F/_ x [_ y / x ]_ C
7 6 2 nfel
 |-  F/ x [_ y / x ]_ C e. B
8 csbeq1a
 |-  ( x = y -> C = [_ y / x ]_ C )
9 8 eleq1d
 |-  ( x = y -> ( C e. B <-> [_ y / x ]_ C e. B ) )
10 1 4 5 7 9 cbvralfw
 |-  ( A. x e. A C e. B <-> A. y e. A [_ y / x ]_ C e. B )
11 nfcv
 |-  F/_ y C
12 1 4 11 6 8 cbvmptf
 |-  ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C )
13 3 12 eqtri
 |-  F = ( y e. A |-> [_ y / x ]_ C )
14 13 fmpt
 |-  ( A. y e. A [_ y / x ]_ C e. B <-> F : A --> B )
15 10 14 bitri
 |-  ( A. x e. A C e. B <-> F : A --> B )