Metamath Proof Explorer


Theorem fmpti

Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses fmpt.1
|- F = ( x e. A |-> C )
fmpti.2
|- ( x e. A -> C e. B )
Assertion fmpti
|- F : A --> B

Proof

Step Hyp Ref Expression
1 fmpt.1
 |-  F = ( x e. A |-> C )
2 fmpti.2
 |-  ( x e. A -> C e. B )
3 2 rgen
 |-  A. x e. A C e. B
4 1 fmpt
 |-  ( A. x e. A C e. B <-> F : A --> B )
5 3 4 mpbi
 |-  F : A --> B