| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmptpr.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | fmptpr.2 |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | fmptpr.3 |  |-  ( ph -> C e. X ) | 
						
							| 4 |  | fmptpr.4 |  |-  ( ph -> D e. Y ) | 
						
							| 5 |  | fmptpr.5 |  |-  ( ( ph /\ x = A ) -> E = C ) | 
						
							| 6 |  | fmptpr.6 |  |-  ( ( ph /\ x = B ) -> E = D ) | 
						
							| 7 |  | df-pr |  |-  { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) ) | 
						
							| 9 | 5 1 3 | fmptsnd |  |-  ( ph -> { <. A , C >. } = ( x e. { A } |-> E ) ) | 
						
							| 10 | 9 | uneq1d |  |-  ( ph -> ( { <. A , C >. } u. { <. B , D >. } ) = ( ( x e. { A } |-> E ) u. { <. B , D >. } ) ) | 
						
							| 11 |  | df-pr |  |-  { A , B } = ( { A } u. { B } ) | 
						
							| 12 | 11 | eqcomi |  |-  ( { A } u. { B } ) = { A , B } | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( { A } u. { B } ) = { A , B } ) | 
						
							| 14 | 2 4 13 6 | fmptapd |  |-  ( ph -> ( ( x e. { A } |-> E ) u. { <. B , D >. } ) = ( x e. { A , B } |-> E ) ) | 
						
							| 15 | 8 10 14 | 3eqtrd |  |-  ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) ) |