Step |
Hyp |
Ref |
Expression |
1 |
|
fmptpr.1 |
|- ( ph -> A e. V ) |
2 |
|
fmptpr.2 |
|- ( ph -> B e. W ) |
3 |
|
fmptpr.3 |
|- ( ph -> C e. X ) |
4 |
|
fmptpr.4 |
|- ( ph -> D e. Y ) |
5 |
|
fmptpr.5 |
|- ( ( ph /\ x = A ) -> E = C ) |
6 |
|
fmptpr.6 |
|- ( ( ph /\ x = B ) -> E = D ) |
7 |
|
df-pr |
|- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
8 |
7
|
a1i |
|- ( ph -> { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) ) |
9 |
5 1 3
|
fmptsnd |
|- ( ph -> { <. A , C >. } = ( x e. { A } |-> E ) ) |
10 |
9
|
uneq1d |
|- ( ph -> ( { <. A , C >. } u. { <. B , D >. } ) = ( ( x e. { A } |-> E ) u. { <. B , D >. } ) ) |
11 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
12 |
11
|
eqcomi |
|- ( { A } u. { B } ) = { A , B } |
13 |
12
|
a1i |
|- ( ph -> ( { A } u. { B } ) = { A , B } ) |
14 |
2 4 13 6
|
fmptapd |
|- ( ph -> ( ( x e. { A } |-> E ) u. { <. B , D >. } ) = ( x e. { A , B } |-> E ) ) |
15 |
8 10 14
|
3eqtrd |
|- ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) ) |