Metamath Proof Explorer


Theorem fmptpr

Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017)

Ref Expression
Hypotheses fmptpr.1
|- ( ph -> A e. V )
fmptpr.2
|- ( ph -> B e. W )
fmptpr.3
|- ( ph -> C e. X )
fmptpr.4
|- ( ph -> D e. Y )
fmptpr.5
|- ( ( ph /\ x = A ) -> E = C )
fmptpr.6
|- ( ( ph /\ x = B ) -> E = D )
Assertion fmptpr
|- ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) )

Proof

Step Hyp Ref Expression
1 fmptpr.1
 |-  ( ph -> A e. V )
2 fmptpr.2
 |-  ( ph -> B e. W )
3 fmptpr.3
 |-  ( ph -> C e. X )
4 fmptpr.4
 |-  ( ph -> D e. Y )
5 fmptpr.5
 |-  ( ( ph /\ x = A ) -> E = C )
6 fmptpr.6
 |-  ( ( ph /\ x = B ) -> E = D )
7 df-pr
 |-  { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } )
8 7 a1i
 |-  ( ph -> { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) )
9 5 1 3 fmptsnd
 |-  ( ph -> { <. A , C >. } = ( x e. { A } |-> E ) )
10 9 uneq1d
 |-  ( ph -> ( { <. A , C >. } u. { <. B , D >. } ) = ( ( x e. { A } |-> E ) u. { <. B , D >. } ) )
11 df-pr
 |-  { A , B } = ( { A } u. { B } )
12 11 eqcomi
 |-  ( { A } u. { B } ) = { A , B }
13 12 a1i
 |-  ( ph -> ( { A } u. { B } ) = { A , B } )
14 2 4 13 6 fmptapd
 |-  ( ph -> ( ( x e. { A } |-> E ) u. { <. B , D >. } ) = ( x e. { A , B } |-> E ) )
15 8 10 14 3eqtrd
 |-  ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) )