Metamath Proof Explorer


Theorem fmptsn

Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Assertion fmptsn
|- ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) )

Proof

Step Hyp Ref Expression
1 xpsng
 |-  ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } )
2 fconstmpt
 |-  ( { A } X. { B } ) = ( x e. { A } |-> B )
3 1 2 eqtr3di
 |-  ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) )