Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by Stefan O'Rear, 28-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fmptsn | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsng | |- ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } ) |
|
2 | fconstmpt | |- ( { A } X. { B } ) = ( x e. { A } |-> B ) |
|
3 | 1 2 | eqtr3di | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) ) |