| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptsnd.1 |
|- ( ( ph /\ x = A ) -> B = C ) |
| 2 |
|
fmptsnd.2 |
|- ( ph -> A e. V ) |
| 3 |
|
fmptsnd.3 |
|- ( ph -> C e. W ) |
| 4 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
| 5 |
4
|
bicomi |
|- ( x = A <-> x e. { A } ) |
| 6 |
5
|
anbi1i |
|- ( ( x = A /\ y = B ) <-> ( x e. { A } /\ y = B ) ) |
| 7 |
6
|
opabbii |
|- { <. x , y >. | ( x = A /\ y = B ) } = { <. x , y >. | ( x e. { A } /\ y = B ) } |
| 8 |
|
velsn |
|- ( p e. { <. A , C >. } <-> p = <. A , C >. ) |
| 9 |
|
eqidd |
|- ( ph -> A = A ) |
| 10 |
|
eqidd |
|- ( ph -> C = C ) |
| 11 |
|
sbcan |
|- ( [. C / y ]. ( x = A /\ y = B ) <-> ( [. C / y ]. x = A /\ [. C / y ]. y = B ) ) |
| 12 |
|
sbcg |
|- ( C e. W -> ( [. C / y ]. x = A <-> x = A ) ) |
| 13 |
3 12
|
syl |
|- ( ph -> ( [. C / y ]. x = A <-> x = A ) ) |
| 14 |
|
eqsbc1 |
|- ( C e. W -> ( [. C / y ]. y = B <-> C = B ) ) |
| 15 |
3 14
|
syl |
|- ( ph -> ( [. C / y ]. y = B <-> C = B ) ) |
| 16 |
13 15
|
anbi12d |
|- ( ph -> ( ( [. C / y ]. x = A /\ [. C / y ]. y = B ) <-> ( x = A /\ C = B ) ) ) |
| 17 |
11 16
|
bitrid |
|- ( ph -> ( [. C / y ]. ( x = A /\ y = B ) <-> ( x = A /\ C = B ) ) ) |
| 18 |
17
|
sbcbidv |
|- ( ph -> ( [. A / x ]. [. C / y ]. ( x = A /\ y = B ) <-> [. A / x ]. ( x = A /\ C = B ) ) ) |
| 19 |
|
eqeq1 |
|- ( x = A -> ( x = A <-> A = A ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ x = A ) -> ( x = A <-> A = A ) ) |
| 21 |
1
|
eqeq2d |
|- ( ( ph /\ x = A ) -> ( C = B <-> C = C ) ) |
| 22 |
20 21
|
anbi12d |
|- ( ( ph /\ x = A ) -> ( ( x = A /\ C = B ) <-> ( A = A /\ C = C ) ) ) |
| 23 |
2 22
|
sbcied |
|- ( ph -> ( [. A / x ]. ( x = A /\ C = B ) <-> ( A = A /\ C = C ) ) ) |
| 24 |
18 23
|
bitrd |
|- ( ph -> ( [. A / x ]. [. C / y ]. ( x = A /\ y = B ) <-> ( A = A /\ C = C ) ) ) |
| 25 |
9 10 24
|
mpbir2and |
|- ( ph -> [. A / x ]. [. C / y ]. ( x = A /\ y = B ) ) |
| 26 |
|
opelopabsb |
|- ( <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } <-> [. A / x ]. [. C / y ]. ( x = A /\ y = B ) ) |
| 27 |
25 26
|
sylibr |
|- ( ph -> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) |
| 28 |
|
eleq1 |
|- ( p = <. A , C >. -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 29 |
27 28
|
syl5ibrcom |
|- ( ph -> ( p = <. A , C >. -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 30 |
8 29
|
biimtrid |
|- ( ph -> ( p e. { <. A , C >. } -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 31 |
|
elopab |
|- ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) ) |
| 32 |
|
opeq12 |
|- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> <. x , y >. = <. A , B >. ) |
| 34 |
33
|
eqeq2d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( p = <. x , y >. <-> p = <. A , B >. ) ) |
| 35 |
1
|
adantrr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> B = C ) |
| 36 |
35
|
opeq2d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> <. A , B >. = <. A , C >. ) |
| 37 |
|
opex |
|- <. A , C >. e. _V |
| 38 |
37
|
snid |
|- <. A , C >. e. { <. A , C >. } |
| 39 |
36 38
|
eqeltrdi |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> <. A , B >. e. { <. A , C >. } ) |
| 40 |
|
eleq1 |
|- ( p = <. A , B >. -> ( p e. { <. A , C >. } <-> <. A , B >. e. { <. A , C >. } ) ) |
| 41 |
39 40
|
syl5ibrcom |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( p = <. A , B >. -> p e. { <. A , C >. } ) ) |
| 42 |
34 41
|
sylbid |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( p = <. x , y >. -> p e. { <. A , C >. } ) ) |
| 43 |
42
|
ex |
|- ( ph -> ( ( x = A /\ y = B ) -> ( p = <. x , y >. -> p e. { <. A , C >. } ) ) ) |
| 44 |
43
|
impcomd |
|- ( ph -> ( ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) ) |
| 45 |
44
|
exlimdvv |
|- ( ph -> ( E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) ) |
| 46 |
31 45
|
biimtrid |
|- ( ph -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } -> p e. { <. A , C >. } ) ) |
| 47 |
30 46
|
impbid |
|- ( ph -> ( p e. { <. A , C >. } <-> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 48 |
47
|
eqrdv |
|- ( ph -> { <. A , C >. } = { <. x , y >. | ( x = A /\ y = B ) } ) |
| 49 |
|
df-mpt |
|- ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } |
| 50 |
49
|
a1i |
|- ( ph -> ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } ) |
| 51 |
7 48 50
|
3eqtr4a |
|- ( ph -> { <. A , C >. } = ( x e. { A } |-> B ) ) |