| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptsng.1 |
|- ( x = A -> B = C ) |
| 2 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
| 3 |
2
|
bicomi |
|- ( x = A <-> x e. { A } ) |
| 4 |
3
|
anbi1i |
|- ( ( x = A /\ y = B ) <-> ( x e. { A } /\ y = B ) ) |
| 5 |
4
|
opabbii |
|- { <. x , y >. | ( x = A /\ y = B ) } = { <. x , y >. | ( x e. { A } /\ y = B ) } |
| 6 |
|
velsn |
|- ( p e. { <. A , C >. } <-> p = <. A , C >. ) |
| 7 |
|
eqidd |
|- ( ( A e. V /\ C e. W ) -> A = A ) |
| 8 |
|
eqidd |
|- ( ( A e. V /\ C e. W ) -> C = C ) |
| 9 |
|
eqeq1 |
|- ( x = A -> ( x = A <-> A = A ) ) |
| 10 |
9
|
adantr |
|- ( ( x = A /\ y = C ) -> ( x = A <-> A = A ) ) |
| 11 |
|
eqeq1 |
|- ( y = C -> ( y = B <-> C = B ) ) |
| 12 |
1
|
eqeq2d |
|- ( x = A -> ( C = B <-> C = C ) ) |
| 13 |
11 12
|
sylan9bbr |
|- ( ( x = A /\ y = C ) -> ( y = B <-> C = C ) ) |
| 14 |
10 13
|
anbi12d |
|- ( ( x = A /\ y = C ) -> ( ( x = A /\ y = B ) <-> ( A = A /\ C = C ) ) ) |
| 15 |
14
|
opelopabga |
|- ( ( A e. V /\ C e. W ) -> ( <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } <-> ( A = A /\ C = C ) ) ) |
| 16 |
7 8 15
|
mpbir2and |
|- ( ( A e. V /\ C e. W ) -> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) |
| 17 |
|
eleq1 |
|- ( p = <. A , C >. -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 18 |
16 17
|
syl5ibrcom |
|- ( ( A e. V /\ C e. W ) -> ( p = <. A , C >. -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 19 |
6 18
|
biimtrid |
|- ( ( A e. V /\ C e. W ) -> ( p e. { <. A , C >. } -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 20 |
|
elopab |
|- ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) ) |
| 21 |
|
opeq12 |
|- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
| 22 |
21
|
eqeq2d |
|- ( ( x = A /\ y = B ) -> ( p = <. x , y >. <-> p = <. A , B >. ) ) |
| 23 |
1
|
adantr |
|- ( ( x = A /\ y = B ) -> B = C ) |
| 24 |
23
|
opeq2d |
|- ( ( x = A /\ y = B ) -> <. A , B >. = <. A , C >. ) |
| 25 |
|
opex |
|- <. A , C >. e. _V |
| 26 |
25
|
snid |
|- <. A , C >. e. { <. A , C >. } |
| 27 |
24 26
|
eqeltrdi |
|- ( ( x = A /\ y = B ) -> <. A , B >. e. { <. A , C >. } ) |
| 28 |
|
eleq1 |
|- ( p = <. A , B >. -> ( p e. { <. A , C >. } <-> <. A , B >. e. { <. A , C >. } ) ) |
| 29 |
27 28
|
syl5ibrcom |
|- ( ( x = A /\ y = B ) -> ( p = <. A , B >. -> p e. { <. A , C >. } ) ) |
| 30 |
22 29
|
sylbid |
|- ( ( x = A /\ y = B ) -> ( p = <. x , y >. -> p e. { <. A , C >. } ) ) |
| 31 |
30
|
impcom |
|- ( ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) |
| 32 |
31
|
exlimivv |
|- ( E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) |
| 33 |
32
|
a1i |
|- ( ( A e. V /\ C e. W ) -> ( E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) ) |
| 34 |
20 33
|
biimtrid |
|- ( ( A e. V /\ C e. W ) -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } -> p e. { <. A , C >. } ) ) |
| 35 |
19 34
|
impbid |
|- ( ( A e. V /\ C e. W ) -> ( p e. { <. A , C >. } <-> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 36 |
35
|
eqrdv |
|- ( ( A e. V /\ C e. W ) -> { <. A , C >. } = { <. x , y >. | ( x = A /\ y = B ) } ) |
| 37 |
|
df-mpt |
|- ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } |
| 38 |
37
|
a1i |
|- ( ( A e. V /\ C e. W ) -> ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } ) |
| 39 |
5 36 38
|
3eqtr4a |
|- ( ( A e. V /\ C e. W ) -> { <. A , C >. } = ( x e. { A } |-> B ) ) |