Metamath Proof Explorer


Theorem fmptsnxp

Description: Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fmptsnxp
|- ( ( A e. V /\ B e. W ) -> ( x e. { A } |-> B ) = ( { A } X. { B } ) )

Proof

Step Hyp Ref Expression
1 xpsng
 |-  ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } )
2 fmptsn
 |-  ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) )
3 1 2 eqtr2d
 |-  ( ( A e. V /\ B e. W ) -> ( x e. { A } |-> B ) = ( { A } X. { B } ) )