Description: The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptssfisupp.1 | |- ( ph -> ( x e. A |-> B ) finSupp Z ) | |
| fmptssfisupp.2 | |- ( ph -> C C_ A ) | ||
| fmptssfisupp.3 | |- ( ph -> Z e. V ) | ||
| Assertion | fmptssfisupp | |- ( ph -> ( x e. C |-> B ) finSupp Z ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmptssfisupp.1 | |- ( ph -> ( x e. A |-> B ) finSupp Z ) | |
| 2 | fmptssfisupp.2 | |- ( ph -> C C_ A ) | |
| 3 | fmptssfisupp.3 | |- ( ph -> Z e. V ) | |
| 4 | 2 | resmptd | |- ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) ) | 
| 5 | 1 3 | fsuppres | |- ( ph -> ( ( x e. A |-> B ) |` C ) finSupp Z ) | 
| 6 | 4 5 | eqbrtrrd | |- ( ph -> ( x e. C |-> B ) finSupp Z ) |