| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmucnd.1 |  |-  ( ph -> U e. ( UnifOn ` X ) ) | 
						
							| 2 |  | fmucnd.2 |  |-  ( ph -> V e. ( UnifOn ` Y ) ) | 
						
							| 3 |  | fmucnd.3 |  |-  ( ph -> F e. ( U uCn V ) ) | 
						
							| 4 |  | fmucnd.4 |  |-  ( ph -> C e. ( CauFilU ` U ) ) | 
						
							| 5 |  | fmucnd.5 |  |-  D = ran ( a e. C |-> ( F " a ) ) | 
						
							| 6 |  | cfilufbas |  |-  ( ( U e. ( UnifOn ` X ) /\ C e. ( CauFilU ` U ) ) -> C e. ( fBas ` X ) ) | 
						
							| 7 | 1 4 6 | syl2anc |  |-  ( ph -> C e. ( fBas ` X ) ) | 
						
							| 8 |  | isucn |  |-  ( ( U e. ( UnifOn ` X ) /\ V e. ( UnifOn ` Y ) ) -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. v e. V E. r e. U A. x e. X A. y e. X ( x r y -> ( F ` x ) v ( F ` y ) ) ) ) ) | 
						
							| 9 | 8 | simprbda |  |-  ( ( ( U e. ( UnifOn ` X ) /\ V e. ( UnifOn ` Y ) ) /\ F e. ( U uCn V ) ) -> F : X --> Y ) | 
						
							| 10 | 1 2 3 9 | syl21anc |  |-  ( ph -> F : X --> Y ) | 
						
							| 11 | 2 | elfvexd |  |-  ( ph -> Y e. _V ) | 
						
							| 12 | 5 | fbasrn |  |-  ( ( C e. ( fBas ` X ) /\ F : X --> Y /\ Y e. _V ) -> D e. ( fBas ` Y ) ) | 
						
							| 13 | 7 10 11 12 | syl3anc |  |-  ( ph -> D e. ( fBas ` Y ) ) | 
						
							| 14 |  | simplr |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> a e. C ) | 
						
							| 15 |  | eqid |  |-  ( F " a ) = ( F " a ) | 
						
							| 16 |  | imaeq2 |  |-  ( c = a -> ( F " c ) = ( F " a ) ) | 
						
							| 17 | 16 | rspceeqv |  |-  ( ( a e. C /\ ( F " a ) = ( F " a ) ) -> E. c e. C ( F " a ) = ( F " c ) ) | 
						
							| 18 | 14 15 17 | sylancl |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> E. c e. C ( F " a ) = ( F " c ) ) | 
						
							| 19 |  | imaexg |  |-  ( F e. ( U uCn V ) -> ( F " a ) e. _V ) | 
						
							| 20 |  | eqid |  |-  ( c e. C |-> ( F " c ) ) = ( c e. C |-> ( F " c ) ) | 
						
							| 21 | 20 | elrnmpt |  |-  ( ( F " a ) e. _V -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) | 
						
							| 22 | 3 19 21 | 3syl |  |-  ( ph -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) | 
						
							| 23 | 22 | ad3antrrr |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( F " a ) e. ran ( c e. C |-> ( F " c ) ) <-> E. c e. C ( F " a ) = ( F " c ) ) ) | 
						
							| 24 | 18 23 | mpbird |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( F " a ) e. ran ( c e. C |-> ( F " c ) ) ) | 
						
							| 25 |  | imaeq2 |  |-  ( a = c -> ( F " a ) = ( F " c ) ) | 
						
							| 26 | 25 | cbvmptv |  |-  ( a e. C |-> ( F " a ) ) = ( c e. C |-> ( F " c ) ) | 
						
							| 27 | 26 | rneqi |  |-  ran ( a e. C |-> ( F " a ) ) = ran ( c e. C |-> ( F " c ) ) | 
						
							| 28 | 5 27 | eqtri |  |-  D = ran ( c e. C |-> ( F " c ) ) | 
						
							| 29 | 24 28 | eleqtrrdi |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( F " a ) e. D ) | 
						
							| 30 | 10 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 31 | 30 | ad3antrrr |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> F Fn X ) | 
						
							| 32 |  | fbelss |  |-  ( ( C e. ( fBas ` X ) /\ a e. C ) -> a C_ X ) | 
						
							| 33 | 7 32 | sylan |  |-  ( ( ph /\ a e. C ) -> a C_ X ) | 
						
							| 34 | 33 | ad4ant13 |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> a C_ X ) | 
						
							| 35 |  | fmucndlem |  |-  ( ( F Fn X /\ a C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) = ( ( F " a ) X. ( F " a ) ) ) | 
						
							| 36 | 31 34 35 | syl2anc |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) = ( ( F " a ) X. ( F " a ) ) ) | 
						
							| 37 |  | eqid |  |-  ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 38 | 37 | mpofun |  |-  Fun ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 39 |  | funimass2 |  |-  ( ( Fun ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) | 
						
							| 40 | 38 39 | mpan |  |-  ( ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( a X. a ) ) C_ v ) | 
						
							| 42 | 36 41 | eqsstrrd |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> ( ( F " a ) X. ( F " a ) ) C_ v ) | 
						
							| 43 |  | id |  |-  ( b = ( F " a ) -> b = ( F " a ) ) | 
						
							| 44 | 43 | sqxpeqd |  |-  ( b = ( F " a ) -> ( b X. b ) = ( ( F " a ) X. ( F " a ) ) ) | 
						
							| 45 | 44 | sseq1d |  |-  ( b = ( F " a ) -> ( ( b X. b ) C_ v <-> ( ( F " a ) X. ( F " a ) ) C_ v ) ) | 
						
							| 46 | 45 | rspcev |  |-  ( ( ( F " a ) e. D /\ ( ( F " a ) X. ( F " a ) ) C_ v ) -> E. b e. D ( b X. b ) C_ v ) | 
						
							| 47 | 29 42 46 | syl2anc |  |-  ( ( ( ( ph /\ v e. V ) /\ a e. C ) /\ ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) -> E. b e. D ( b X. b ) C_ v ) | 
						
							| 48 | 1 | adantr |  |-  ( ( ph /\ v e. V ) -> U e. ( UnifOn ` X ) ) | 
						
							| 49 | 4 | adantr |  |-  ( ( ph /\ v e. V ) -> C e. ( CauFilU ` U ) ) | 
						
							| 50 | 2 | adantr |  |-  ( ( ph /\ v e. V ) -> V e. ( UnifOn ` Y ) ) | 
						
							| 51 | 3 | adantr |  |-  ( ( ph /\ v e. V ) -> F e. ( U uCn V ) ) | 
						
							| 52 |  | simpr |  |-  ( ( ph /\ v e. V ) -> v e. V ) | 
						
							| 53 |  | nfcv |  |-  F/_ s <. ( F ` x ) , ( F ` y ) >. | 
						
							| 54 |  | nfcv |  |-  F/_ t <. ( F ` x ) , ( F ` y ) >. | 
						
							| 55 |  | nfcv |  |-  F/_ x <. ( F ` s ) , ( F ` t ) >. | 
						
							| 56 |  | nfcv |  |-  F/_ y <. ( F ` s ) , ( F ` t ) >. | 
						
							| 57 |  | simpl |  |-  ( ( x = s /\ y = t ) -> x = s ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( x = s /\ y = t ) -> ( F ` x ) = ( F ` s ) ) | 
						
							| 59 |  | simpr |  |-  ( ( x = s /\ y = t ) -> y = t ) | 
						
							| 60 | 59 | fveq2d |  |-  ( ( x = s /\ y = t ) -> ( F ` y ) = ( F ` t ) ) | 
						
							| 61 | 58 60 | opeq12d |  |-  ( ( x = s /\ y = t ) -> <. ( F ` x ) , ( F ` y ) >. = <. ( F ` s ) , ( F ` t ) >. ) | 
						
							| 62 | 53 54 55 56 61 | cbvmpo |  |-  ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) = ( s e. X , t e. X |-> <. ( F ` s ) , ( F ` t ) >. ) | 
						
							| 63 | 48 50 51 52 62 | ucnprima |  |-  ( ( ph /\ v e. V ) -> ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) e. U ) | 
						
							| 64 |  | cfiluexsm |  |-  ( ( U e. ( UnifOn ` X ) /\ C e. ( CauFilU ` U ) /\ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) e. U ) -> E. a e. C ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) | 
						
							| 65 | 48 49 63 64 | syl3anc |  |-  ( ( ph /\ v e. V ) -> E. a e. C ( a X. a ) C_ ( `' ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " v ) ) | 
						
							| 66 | 47 65 | r19.29a |  |-  ( ( ph /\ v e. V ) -> E. b e. D ( b X. b ) C_ v ) | 
						
							| 67 | 66 | ralrimiva |  |-  ( ph -> A. v e. V E. b e. D ( b X. b ) C_ v ) | 
						
							| 68 |  | iscfilu |  |-  ( V e. ( UnifOn ` Y ) -> ( D e. ( CauFilU ` V ) <-> ( D e. ( fBas ` Y ) /\ A. v e. V E. b e. D ( b X. b ) C_ v ) ) ) | 
						
							| 69 | 2 68 | syl |  |-  ( ph -> ( D e. ( CauFilU ` V ) <-> ( D e. ( fBas ` Y ) /\ A. v e. V E. b e. D ( b X. b ) C_ v ) ) ) | 
						
							| 70 | 13 67 69 | mpbir2and |  |-  ( ph -> D e. ( CauFilU ` V ) ) |