| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ima |  |-  ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ran ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) | 
						
							| 2 |  | simpr |  |-  ( ( F Fn X /\ A C_ X ) -> A C_ X ) | 
						
							| 3 |  | resmpo |  |-  ( ( A C_ X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) | 
						
							| 4 | 2 3 | sylancom |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) | 
						
							| 5 | 4 | rneqd |  |-  ( ( F Fn X /\ A C_ X ) -> ran ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) | 
						
							| 6 | 1 5 | eqtrid |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 7 8 | op1std |  |-  ( p = <. x , y >. -> ( 1st ` p ) = x ) | 
						
							| 10 | 9 | fveq2d |  |-  ( p = <. x , y >. -> ( F ` ( 1st ` p ) ) = ( F ` x ) ) | 
						
							| 11 | 7 8 | op2ndd |  |-  ( p = <. x , y >. -> ( 2nd ` p ) = y ) | 
						
							| 12 | 11 | fveq2d |  |-  ( p = <. x , y >. -> ( F ` ( 2nd ` p ) ) = ( F ` y ) ) | 
						
							| 13 | 10 12 | opeq12d |  |-  ( p = <. x , y >. -> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. = <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 14 | 13 | mpompt |  |-  ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 15 | 14 | eqcomi |  |-  ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) | 
						
							| 16 | 15 | rneqi |  |-  ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ran ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) | 
						
							| 17 |  | fvexd |  |-  ( ( T. /\ p e. ( A X. A ) ) -> ( F ` ( 1st ` p ) ) e. _V ) | 
						
							| 18 |  | fvexd |  |-  ( ( T. /\ p e. ( A X. A ) ) -> ( F ` ( 2nd ` p ) ) e. _V ) | 
						
							| 19 | 16 17 18 | fliftrel |  |-  ( T. -> ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) C_ ( _V X. _V ) ) | 
						
							| 20 | 19 | mptru |  |-  ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) C_ ( _V X. _V ) | 
						
							| 21 | 20 | sseli |  |-  ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) -> p e. ( _V X. _V ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) -> p e. ( _V X. _V ) ) | 
						
							| 23 |  | xpss |  |-  ( ( F " A ) X. ( F " A ) ) C_ ( _V X. _V ) | 
						
							| 24 | 23 | sseli |  |-  ( p e. ( ( F " A ) X. ( F " A ) ) -> p e. ( _V X. _V ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( ( F " A ) X. ( F " A ) ) ) -> p e. ( _V X. _V ) ) | 
						
							| 26 |  | eqid |  |-  ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 27 |  | opex |  |-  <. ( F ` x ) , ( F ` y ) >. e. _V | 
						
							| 28 | 26 27 | elrnmpo |  |-  ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> E. x e. A E. y e. A <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 29 |  | eqcom |  |-  ( <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> <. ( F ` x ) , ( F ` y ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 30 |  | fvex |  |-  ( 1st ` p ) e. _V | 
						
							| 31 |  | fvex |  |-  ( 2nd ` p ) e. _V | 
						
							| 32 | 30 31 | opth2 |  |-  ( <. ( F ` x ) , ( F ` y ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. <-> ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 33 | 29 32 | bitri |  |-  ( <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 34 | 33 | 2rexbii |  |-  ( E. x e. A E. y e. A <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> E. x e. A E. y e. A ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 35 |  | reeanv |  |-  ( E. x e. A E. y e. A ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 36 | 28 34 35 | 3bitri |  |-  ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 37 |  | fvelimab |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( 1st ` p ) e. ( F " A ) <-> E. x e. A ( F ` x ) = ( 1st ` p ) ) ) | 
						
							| 38 |  | fvelimab |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( 2nd ` p ) e. ( F " A ) <-> E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) ) | 
						
							| 40 | 36 39 | bitr4id |  |-  ( ( F Fn X /\ A C_ X ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) ) ) | 
						
							| 41 |  | opelxp |  |-  ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) <-> ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) ) | 
						
							| 42 | 40 41 | bitr4di |  |-  ( ( F Fn X /\ A C_ X ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) | 
						
							| 44 |  | 1st2nd2 |  |-  ( p e. ( _V X. _V ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 46 | 45 | eleq1d |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) ) | 
						
							| 47 | 45 | eleq1d |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ( ( F " A ) X. ( F " A ) ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) | 
						
							| 48 | 43 46 47 | 3bitr4d |  |-  ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> p e. ( ( F " A ) X. ( F " A ) ) ) ) | 
						
							| 49 | 22 25 48 | eqrdav |  |-  ( ( F Fn X /\ A C_ X ) -> ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( ( F " A ) X. ( F " A ) ) ) | 
						
							| 50 | 6 49 | eqtrd |  |-  ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ( ( F " A ) X. ( F " A ) ) ) |