| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmul01lt1.1 |
|- F/_ i B |
| 2 |
|
fmul01lt1.2 |
|- F/ i ph |
| 3 |
|
fmul01lt1.3 |
|- F/_ j A |
| 4 |
|
fmul01lt1.4 |
|- A = seq 1 ( x. , B ) |
| 5 |
|
fmul01lt1.5 |
|- ( ph -> M e. NN ) |
| 6 |
|
fmul01lt1.6 |
|- ( ph -> B : ( 1 ... M ) --> RR ) |
| 7 |
|
fmul01lt1.7 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) |
| 8 |
|
fmul01lt1.8 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) |
| 9 |
|
fmul01lt1.9 |
|- ( ph -> E e. RR+ ) |
| 10 |
|
fmul01lt1.10 |
|- ( ph -> E. j e. ( 1 ... M ) ( B ` j ) < E ) |
| 11 |
|
nfv |
|- F/ j ph |
| 12 |
|
nfcv |
|- F/_ j M |
| 13 |
3 12
|
nffv |
|- F/_ j ( A ` M ) |
| 14 |
|
nfcv |
|- F/_ j < |
| 15 |
|
nfcv |
|- F/_ j E |
| 16 |
13 14 15
|
nfbr |
|- F/ j ( A ` M ) < E |
| 17 |
|
nfv |
|- F/ i j e. ( 1 ... M ) |
| 18 |
|
nfcv |
|- F/_ i j |
| 19 |
1 18
|
nffv |
|- F/_ i ( B ` j ) |
| 20 |
|
nfcv |
|- F/_ i < |
| 21 |
|
nfcv |
|- F/_ i E |
| 22 |
19 20 21
|
nfbr |
|- F/ i ( B ` j ) < E |
| 23 |
2 17 22
|
nf3an |
|- F/ i ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) |
| 24 |
|
1zzd |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> 1 e. ZZ ) |
| 25 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
| 26 |
5 25
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> M e. ( ZZ>= ` 1 ) ) |
| 28 |
6
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) |
| 29 |
28
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) |
| 30 |
7
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) |
| 31 |
8
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) |
| 32 |
9
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> E e. RR+ ) |
| 33 |
|
simp2 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> j e. ( 1 ... M ) ) |
| 34 |
|
simp3 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( B ` j ) < E ) |
| 35 |
1 23 4 24 27 29 30 31 32 33 34
|
fmul01lt1lem2 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( A ` M ) < E ) |
| 36 |
35
|
3exp |
|- ( ph -> ( j e. ( 1 ... M ) -> ( ( B ` j ) < E -> ( A ` M ) < E ) ) ) |
| 37 |
11 16 36
|
rexlimd |
|- ( ph -> ( E. j e. ( 1 ... M ) ( B ` j ) < E -> ( A ` M ) < E ) ) |
| 38 |
10 37
|
mpd |
|- ( ph -> ( A ` M ) < E ) |