Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1.1 |
|- F/_ i B |
2 |
|
fmul01lt1.2 |
|- F/ i ph |
3 |
|
fmul01lt1.3 |
|- F/_ j A |
4 |
|
fmul01lt1.4 |
|- A = seq 1 ( x. , B ) |
5 |
|
fmul01lt1.5 |
|- ( ph -> M e. NN ) |
6 |
|
fmul01lt1.6 |
|- ( ph -> B : ( 1 ... M ) --> RR ) |
7 |
|
fmul01lt1.7 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) |
8 |
|
fmul01lt1.8 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) |
9 |
|
fmul01lt1.9 |
|- ( ph -> E e. RR+ ) |
10 |
|
fmul01lt1.10 |
|- ( ph -> E. j e. ( 1 ... M ) ( B ` j ) < E ) |
11 |
|
nfv |
|- F/ j ph |
12 |
|
nfcv |
|- F/_ j M |
13 |
3 12
|
nffv |
|- F/_ j ( A ` M ) |
14 |
|
nfcv |
|- F/_ j < |
15 |
|
nfcv |
|- F/_ j E |
16 |
13 14 15
|
nfbr |
|- F/ j ( A ` M ) < E |
17 |
|
nfv |
|- F/ i j e. ( 1 ... M ) |
18 |
|
nfcv |
|- F/_ i j |
19 |
1 18
|
nffv |
|- F/_ i ( B ` j ) |
20 |
|
nfcv |
|- F/_ i < |
21 |
|
nfcv |
|- F/_ i E |
22 |
19 20 21
|
nfbr |
|- F/ i ( B ` j ) < E |
23 |
2 17 22
|
nf3an |
|- F/ i ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) |
24 |
|
1zzd |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> 1 e. ZZ ) |
25 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
26 |
5 25
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
27 |
26
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> M e. ( ZZ>= ` 1 ) ) |
28 |
6
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) |
29 |
28
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) |
30 |
7
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) |
31 |
8
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) |
32 |
9
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> E e. RR+ ) |
33 |
|
simp2 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> j e. ( 1 ... M ) ) |
34 |
|
simp3 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( B ` j ) < E ) |
35 |
1 23 4 24 27 29 30 31 32 33 34
|
fmul01lt1lem2 |
|- ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( A ` M ) < E ) |
36 |
35
|
3exp |
|- ( ph -> ( j e. ( 1 ... M ) -> ( ( B ` j ) < E -> ( A ` M ) < E ) ) ) |
37 |
11 16 36
|
rexlimd |
|- ( ph -> ( E. j e. ( 1 ... M ) ( B ` j ) < E -> ( A ` M ) < E ) ) |
38 |
10 37
|
mpd |
|- ( ph -> ( A ` M ) < E ) |