Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1lem2.1 |
|- F/_ i B |
2 |
|
fmul01lt1lem2.2 |
|- F/ i ph |
3 |
|
fmul01lt1lem2.3 |
|- A = seq L ( x. , B ) |
4 |
|
fmul01lt1lem2.4 |
|- ( ph -> L e. ZZ ) |
5 |
|
fmul01lt1lem2.5 |
|- ( ph -> M e. ( ZZ>= ` L ) ) |
6 |
|
fmul01lt1lem2.6 |
|- ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
7 |
|
fmul01lt1lem2.7 |
|- ( ( ph /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
8 |
|
fmul01lt1lem2.8 |
|- ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
9 |
|
fmul01lt1lem2.9 |
|- ( ph -> E e. RR+ ) |
10 |
|
fmul01lt1lem2.10 |
|- ( ph -> J e. ( L ... M ) ) |
11 |
|
fmul01lt1lem2.11 |
|- ( ph -> ( B ` J ) < E ) |
12 |
|
nfv |
|- F/ i J = L |
13 |
2 12
|
nfan |
|- F/ i ( ph /\ J = L ) |
14 |
4
|
adantr |
|- ( ( ph /\ J = L ) -> L e. ZZ ) |
15 |
5
|
adantr |
|- ( ( ph /\ J = L ) -> M e. ( ZZ>= ` L ) ) |
16 |
6
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
17 |
7
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
18 |
8
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
19 |
9
|
adantr |
|- ( ( ph /\ J = L ) -> E e. RR+ ) |
20 |
|
simpr |
|- ( ( ph /\ J = L ) -> J = L ) |
21 |
20
|
fveq2d |
|- ( ( ph /\ J = L ) -> ( B ` J ) = ( B ` L ) ) |
22 |
11
|
adantr |
|- ( ( ph /\ J = L ) -> ( B ` J ) < E ) |
23 |
21 22
|
eqbrtrrd |
|- ( ( ph /\ J = L ) -> ( B ` L ) < E ) |
24 |
1 13 3 14 15 16 17 18 19 23
|
fmul01lt1lem1 |
|- ( ( ph /\ J = L ) -> ( A ` M ) < E ) |
25 |
3
|
fveq1i |
|- ( A ` M ) = ( seq L ( x. , B ) ` M ) |
26 |
|
nfv |
|- F/ i a e. ( L ... M ) |
27 |
2 26
|
nfan |
|- F/ i ( ph /\ a e. ( L ... M ) ) |
28 |
|
nfcv |
|- F/_ i a |
29 |
1 28
|
nffv |
|- F/_ i ( B ` a ) |
30 |
29
|
nfel1 |
|- F/ i ( B ` a ) e. RR |
31 |
27 30
|
nfim |
|- F/ i ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
32 |
|
eleq1w |
|- ( i = a -> ( i e. ( L ... M ) <-> a e. ( L ... M ) ) ) |
33 |
32
|
anbi2d |
|- ( i = a -> ( ( ph /\ i e. ( L ... M ) ) <-> ( ph /\ a e. ( L ... M ) ) ) ) |
34 |
|
fveq2 |
|- ( i = a -> ( B ` i ) = ( B ` a ) ) |
35 |
34
|
eleq1d |
|- ( i = a -> ( ( B ` i ) e. RR <-> ( B ` a ) e. RR ) ) |
36 |
33 35
|
imbi12d |
|- ( i = a -> ( ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) |
37 |
31 36 6
|
chvarfv |
|- ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
38 |
|
remulcl |
|- ( ( a e. RR /\ j e. RR ) -> ( a x. j ) e. RR ) |
39 |
38
|
adantl |
|- ( ( ph /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
40 |
5 37 39
|
seqcl |
|- ( ph -> ( seq L ( x. , B ) ` M ) e. RR ) |
41 |
40
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) e. RR ) |
42 |
|
elfzuz3 |
|- ( J e. ( L ... M ) -> M e. ( ZZ>= ` J ) ) |
43 |
10 42
|
syl |
|- ( ph -> M e. ( ZZ>= ` J ) ) |
44 |
|
nfv |
|- F/ i a e. ( J ... M ) |
45 |
2 44
|
nfan |
|- F/ i ( ph /\ a e. ( J ... M ) ) |
46 |
45 30
|
nfim |
|- F/ i ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) |
47 |
|
eleq1w |
|- ( i = a -> ( i e. ( J ... M ) <-> a e. ( J ... M ) ) ) |
48 |
47
|
anbi2d |
|- ( i = a -> ( ( ph /\ i e. ( J ... M ) ) <-> ( ph /\ a e. ( J ... M ) ) ) ) |
49 |
48 35
|
imbi12d |
|- ( i = a -> ( ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) ) ) |
50 |
4
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L e. ZZ ) |
51 |
|
eluzelz |
|- ( M e. ( ZZ>= ` L ) -> M e. ZZ ) |
52 |
5 51
|
syl |
|- ( ph -> M e. ZZ ) |
53 |
52
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> M e. ZZ ) |
54 |
|
elfzelz |
|- ( i e. ( J ... M ) -> i e. ZZ ) |
55 |
54
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. ZZ ) |
56 |
4
|
zred |
|- ( ph -> L e. RR ) |
57 |
56
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L e. RR ) |
58 |
|
elfzelz |
|- ( J e. ( L ... M ) -> J e. ZZ ) |
59 |
10 58
|
syl |
|- ( ph -> J e. ZZ ) |
60 |
59
|
zred |
|- ( ph -> J e. RR ) |
61 |
60
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> J e. RR ) |
62 |
54
|
zred |
|- ( i e. ( J ... M ) -> i e. RR ) |
63 |
62
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. RR ) |
64 |
|
elfzle1 |
|- ( J e. ( L ... M ) -> L <_ J ) |
65 |
10 64
|
syl |
|- ( ph -> L <_ J ) |
66 |
65
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L <_ J ) |
67 |
|
elfzle1 |
|- ( i e. ( J ... M ) -> J <_ i ) |
68 |
67
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> J <_ i ) |
69 |
57 61 63 66 68
|
letrd |
|- ( ( ph /\ i e. ( J ... M ) ) -> L <_ i ) |
70 |
|
elfzle2 |
|- ( i e. ( J ... M ) -> i <_ M ) |
71 |
70
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i <_ M ) |
72 |
50 53 55 69 71
|
elfzd |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. ( L ... M ) ) |
73 |
72 6
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) |
74 |
46 49 73
|
chvarfv |
|- ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) |
75 |
43 74 39
|
seqcl |
|- ( ph -> ( seq J ( x. , B ) ` M ) e. RR ) |
76 |
75
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. RR ) |
77 |
9
|
rpred |
|- ( ph -> E e. RR ) |
78 |
77
|
adantr |
|- ( ( ph /\ -. J = L ) -> E e. RR ) |
79 |
|
remulcl |
|- ( ( a e. RR /\ b e. RR ) -> ( a x. b ) e. RR ) |
80 |
79
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR ) ) -> ( a x. b ) e. RR ) |
81 |
|
simp1 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. RR ) |
82 |
81
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. CC ) |
83 |
|
simp2 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. RR ) |
84 |
83
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. CC ) |
85 |
|
simp3 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. RR ) |
86 |
85
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. CC ) |
87 |
82 84 86
|
mulassd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) |
88 |
87
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR /\ c e. RR ) ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) |
89 |
59
|
zcnd |
|- ( ph -> J e. CC ) |
90 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
91 |
89 90
|
npcand |
|- ( ph -> ( ( J - 1 ) + 1 ) = J ) |
92 |
91
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( J - 1 ) + 1 ) ) = ( ZZ>= ` J ) ) |
93 |
43 92
|
eleqtrrd |
|- ( ph -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) |
94 |
93
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) |
95 |
4
|
adantr |
|- ( ( ph /\ -. J = L ) -> L e. ZZ ) |
96 |
59
|
adantr |
|- ( ( ph /\ -. J = L ) -> J e. ZZ ) |
97 |
|
1zzd |
|- ( ( ph /\ -. J = L ) -> 1 e. ZZ ) |
98 |
96 97
|
zsubcld |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ZZ ) |
99 |
|
simpr |
|- ( ( ph /\ -. J = L ) -> -. J = L ) |
100 |
|
eqcom |
|- ( J = L <-> L = J ) |
101 |
99 100
|
sylnib |
|- ( ( ph /\ -. J = L ) -> -. L = J ) |
102 |
56 60
|
leloed |
|- ( ph -> ( L <_ J <-> ( L < J \/ L = J ) ) ) |
103 |
65 102
|
mpbid |
|- ( ph -> ( L < J \/ L = J ) ) |
104 |
103
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L < J \/ L = J ) ) |
105 |
|
orel2 |
|- ( -. L = J -> ( ( L < J \/ L = J ) -> L < J ) ) |
106 |
101 104 105
|
sylc |
|- ( ( ph /\ -. J = L ) -> L < J ) |
107 |
|
zltlem1 |
|- ( ( L e. ZZ /\ J e. ZZ ) -> ( L < J <-> L <_ ( J - 1 ) ) ) |
108 |
4 59 107
|
syl2anc |
|- ( ph -> ( L < J <-> L <_ ( J - 1 ) ) ) |
109 |
108
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L < J <-> L <_ ( J - 1 ) ) ) |
110 |
106 109
|
mpbid |
|- ( ( ph /\ -. J = L ) -> L <_ ( J - 1 ) ) |
111 |
|
eluz2 |
|- ( ( J - 1 ) e. ( ZZ>= ` L ) <-> ( L e. ZZ /\ ( J - 1 ) e. ZZ /\ L <_ ( J - 1 ) ) ) |
112 |
95 98 110 111
|
syl3anbrc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( ZZ>= ` L ) ) |
113 |
|
nfv |
|- F/ i -. J = L |
114 |
2 113
|
nfan |
|- F/ i ( ph /\ -. J = L ) |
115 |
114 26
|
nfan |
|- F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) |
116 |
115 30
|
nfim |
|- F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
117 |
32
|
anbi2d |
|- ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) ) ) |
118 |
117 35
|
imbi12d |
|- ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) |
119 |
6
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
120 |
116 118 119
|
chvarfv |
|- ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
121 |
80 88 94 112 120
|
seqsplit |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) ) |
122 |
91
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) + 1 ) = J ) |
123 |
122
|
seqeq1d |
|- ( ( ph /\ -. J = L ) -> seq ( ( J - 1 ) + 1 ) ( x. , B ) = seq J ( x. , B ) ) |
124 |
123
|
fveq1d |
|- ( ( ph /\ -. J = L ) -> ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) = ( seq J ( x. , B ) ` M ) ) |
125 |
124
|
oveq2d |
|- ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) |
126 |
121 125
|
eqtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) |
127 |
|
nfv |
|- F/ i a e. ( L ... ( J - 1 ) ) |
128 |
114 127
|
nfan |
|- F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) |
129 |
128 30
|
nfim |
|- F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) |
130 |
|
eleq1w |
|- ( i = a -> ( i e. ( L ... ( J - 1 ) ) <-> a e. ( L ... ( J - 1 ) ) ) ) |
131 |
130
|
anbi2d |
|- ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) ) ) |
132 |
131 35
|
imbi12d |
|- ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) ) ) |
133 |
4
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L e. ZZ ) |
134 |
52
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. ZZ ) |
135 |
|
elfzelz |
|- ( i e. ( L ... ( J - 1 ) ) -> i e. ZZ ) |
136 |
135
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ZZ ) |
137 |
|
elfzle1 |
|- ( i e. ( L ... ( J - 1 ) ) -> L <_ i ) |
138 |
137
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L <_ i ) |
139 |
135
|
zred |
|- ( i e. ( L ... ( J - 1 ) ) -> i e. RR ) |
140 |
139
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. RR ) |
141 |
60
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J e. RR ) |
142 |
52
|
zred |
|- ( ph -> M e. RR ) |
143 |
142
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. RR ) |
144 |
|
1red |
|- ( ph -> 1 e. RR ) |
145 |
60 144
|
resubcld |
|- ( ph -> ( J - 1 ) e. RR ) |
146 |
145
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) e. RR ) |
147 |
|
elfzle2 |
|- ( i e. ( L ... ( J - 1 ) ) -> i <_ ( J - 1 ) ) |
148 |
147
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ ( J - 1 ) ) |
149 |
60
|
lem1d |
|- ( ph -> ( J - 1 ) <_ J ) |
150 |
149
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) <_ J ) |
151 |
140 146 141 148 150
|
letrd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ J ) |
152 |
|
elfzle2 |
|- ( J e. ( L ... M ) -> J <_ M ) |
153 |
10 152
|
syl |
|- ( ph -> J <_ M ) |
154 |
153
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J <_ M ) |
155 |
140 141 143 151 154
|
letrd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ M ) |
156 |
133 134 136 138 155
|
elfzd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ( L ... M ) ) |
157 |
156 6
|
syldan |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) |
158 |
157
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) |
159 |
129 132 158
|
chvarfv |
|- ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) |
160 |
38
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
161 |
112 159 160
|
seqcl |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) e. RR ) |
162 |
|
1red |
|- ( ( ph /\ -. J = L ) -> 1 e. RR ) |
163 |
|
eqid |
|- seq J ( x. , B ) = seq J ( x. , B ) |
164 |
43
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` J ) ) |
165 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` J ) -> M e. ( J ... M ) ) |
166 |
43 165
|
syl |
|- ( ph -> M e. ( J ... M ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( J ... M ) ) |
168 |
73
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) |
169 |
72 7
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) |
170 |
169
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) |
171 |
72 8
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) |
172 |
171
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) |
173 |
1 114 163 96 164 167 168 170 172
|
fmul01 |
|- ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq J ( x. , B ) ` M ) /\ ( seq J ( x. , B ) ` M ) <_ 1 ) ) |
174 |
173
|
simpld |
|- ( ( ph /\ -. J = L ) -> 0 <_ ( seq J ( x. , B ) ` M ) ) |
175 |
|
eqid |
|- seq L ( x. , B ) = seq L ( x. , B ) |
176 |
5
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` L ) ) |
177 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
178 |
59 177
|
zsubcld |
|- ( ph -> ( J - 1 ) e. ZZ ) |
179 |
4 52 178
|
3jca |
|- ( ph -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) |
180 |
179
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) |
181 |
145 60 142
|
3jca |
|- ( ph -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) |
182 |
181
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) |
183 |
60
|
adantr |
|- ( ( ph /\ -. J = L ) -> J e. RR ) |
184 |
183
|
lem1d |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ J ) |
185 |
153
|
adantr |
|- ( ( ph /\ -. J = L ) -> J <_ M ) |
186 |
184 185
|
jca |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) <_ J /\ J <_ M ) ) |
187 |
|
letr |
|- ( ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) -> ( ( ( J - 1 ) <_ J /\ J <_ M ) -> ( J - 1 ) <_ M ) ) |
188 |
182 186 187
|
sylc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ M ) |
189 |
110 188
|
jca |
|- ( ( ph /\ -. J = L ) -> ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) |
190 |
|
elfz2 |
|- ( ( J - 1 ) e. ( L ... M ) <-> ( ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) /\ ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) ) |
191 |
180 189 190
|
sylanbrc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( L ... M ) ) |
192 |
7
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
193 |
8
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
194 |
1 114 175 95 176 191 119 192 193
|
fmul01 |
|- ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq L ( x. , B ) ` ( J - 1 ) ) /\ ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) ) |
195 |
194
|
simprd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) |
196 |
161 162 76 174 195
|
lemul1ad |
|- ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) |
197 |
126 196
|
eqbrtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) |
198 |
76
|
recnd |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. CC ) |
199 |
198
|
mulid2d |
|- ( ( ph /\ -. J = L ) -> ( 1 x. ( seq J ( x. , B ) ` M ) ) = ( seq J ( x. , B ) ` M ) ) |
200 |
197 199
|
breqtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( seq J ( x. , B ) ` M ) ) |
201 |
1 2 163 59 43 73 169 171 9 11
|
fmul01lt1lem1 |
|- ( ph -> ( seq J ( x. , B ) ` M ) < E ) |
202 |
201
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) < E ) |
203 |
41 76 78 200 202
|
lelttrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) < E ) |
204 |
25 203
|
eqbrtrid |
|- ( ( ph /\ -. J = L ) -> ( A ` M ) < E ) |
205 |
24 204
|
pm2.61dan |
|- ( ph -> ( A ` M ) < E ) |