| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmul01lt1lem2.1 |
|- F/_ i B |
| 2 |
|
fmul01lt1lem2.2 |
|- F/ i ph |
| 3 |
|
fmul01lt1lem2.3 |
|- A = seq L ( x. , B ) |
| 4 |
|
fmul01lt1lem2.4 |
|- ( ph -> L e. ZZ ) |
| 5 |
|
fmul01lt1lem2.5 |
|- ( ph -> M e. ( ZZ>= ` L ) ) |
| 6 |
|
fmul01lt1lem2.6 |
|- ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
| 7 |
|
fmul01lt1lem2.7 |
|- ( ( ph /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
| 8 |
|
fmul01lt1lem2.8 |
|- ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
| 9 |
|
fmul01lt1lem2.9 |
|- ( ph -> E e. RR+ ) |
| 10 |
|
fmul01lt1lem2.10 |
|- ( ph -> J e. ( L ... M ) ) |
| 11 |
|
fmul01lt1lem2.11 |
|- ( ph -> ( B ` J ) < E ) |
| 12 |
|
nfv |
|- F/ i J = L |
| 13 |
2 12
|
nfan |
|- F/ i ( ph /\ J = L ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ J = L ) -> L e. ZZ ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ J = L ) -> M e. ( ZZ>= ` L ) ) |
| 16 |
6
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
| 17 |
7
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
| 18 |
8
|
adantlr |
|- ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ J = L ) -> E e. RR+ ) |
| 20 |
|
simpr |
|- ( ( ph /\ J = L ) -> J = L ) |
| 21 |
20
|
fveq2d |
|- ( ( ph /\ J = L ) -> ( B ` J ) = ( B ` L ) ) |
| 22 |
11
|
adantr |
|- ( ( ph /\ J = L ) -> ( B ` J ) < E ) |
| 23 |
21 22
|
eqbrtrrd |
|- ( ( ph /\ J = L ) -> ( B ` L ) < E ) |
| 24 |
1 13 3 14 15 16 17 18 19 23
|
fmul01lt1lem1 |
|- ( ( ph /\ J = L ) -> ( A ` M ) < E ) |
| 25 |
3
|
fveq1i |
|- ( A ` M ) = ( seq L ( x. , B ) ` M ) |
| 26 |
|
nfv |
|- F/ i a e. ( L ... M ) |
| 27 |
2 26
|
nfan |
|- F/ i ( ph /\ a e. ( L ... M ) ) |
| 28 |
|
nfcv |
|- F/_ i a |
| 29 |
1 28
|
nffv |
|- F/_ i ( B ` a ) |
| 30 |
29
|
nfel1 |
|- F/ i ( B ` a ) e. RR |
| 31 |
27 30
|
nfim |
|- F/ i ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
| 32 |
|
eleq1w |
|- ( i = a -> ( i e. ( L ... M ) <-> a e. ( L ... M ) ) ) |
| 33 |
32
|
anbi2d |
|- ( i = a -> ( ( ph /\ i e. ( L ... M ) ) <-> ( ph /\ a e. ( L ... M ) ) ) ) |
| 34 |
|
fveq2 |
|- ( i = a -> ( B ` i ) = ( B ` a ) ) |
| 35 |
34
|
eleq1d |
|- ( i = a -> ( ( B ` i ) e. RR <-> ( B ` a ) e. RR ) ) |
| 36 |
33 35
|
imbi12d |
|- ( i = a -> ( ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) |
| 37 |
31 36 6
|
chvarfv |
|- ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
| 38 |
|
remulcl |
|- ( ( a e. RR /\ j e. RR ) -> ( a x. j ) e. RR ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
| 40 |
5 37 39
|
seqcl |
|- ( ph -> ( seq L ( x. , B ) ` M ) e. RR ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) e. RR ) |
| 42 |
|
elfzuz3 |
|- ( J e. ( L ... M ) -> M e. ( ZZ>= ` J ) ) |
| 43 |
10 42
|
syl |
|- ( ph -> M e. ( ZZ>= ` J ) ) |
| 44 |
|
nfv |
|- F/ i a e. ( J ... M ) |
| 45 |
2 44
|
nfan |
|- F/ i ( ph /\ a e. ( J ... M ) ) |
| 46 |
45 30
|
nfim |
|- F/ i ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) |
| 47 |
|
eleq1w |
|- ( i = a -> ( i e. ( J ... M ) <-> a e. ( J ... M ) ) ) |
| 48 |
47
|
anbi2d |
|- ( i = a -> ( ( ph /\ i e. ( J ... M ) ) <-> ( ph /\ a e. ( J ... M ) ) ) ) |
| 49 |
48 35
|
imbi12d |
|- ( i = a -> ( ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) ) ) |
| 50 |
4
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L e. ZZ ) |
| 51 |
|
eluzelz |
|- ( M e. ( ZZ>= ` L ) -> M e. ZZ ) |
| 52 |
5 51
|
syl |
|- ( ph -> M e. ZZ ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> M e. ZZ ) |
| 54 |
|
elfzelz |
|- ( i e. ( J ... M ) -> i e. ZZ ) |
| 55 |
54
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. ZZ ) |
| 56 |
4
|
zred |
|- ( ph -> L e. RR ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L e. RR ) |
| 58 |
|
elfzelz |
|- ( J e. ( L ... M ) -> J e. ZZ ) |
| 59 |
10 58
|
syl |
|- ( ph -> J e. ZZ ) |
| 60 |
59
|
zred |
|- ( ph -> J e. RR ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> J e. RR ) |
| 62 |
54
|
zred |
|- ( i e. ( J ... M ) -> i e. RR ) |
| 63 |
62
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. RR ) |
| 64 |
|
elfzle1 |
|- ( J e. ( L ... M ) -> L <_ J ) |
| 65 |
10 64
|
syl |
|- ( ph -> L <_ J ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ i e. ( J ... M ) ) -> L <_ J ) |
| 67 |
|
elfzle1 |
|- ( i e. ( J ... M ) -> J <_ i ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> J <_ i ) |
| 69 |
57 61 63 66 68
|
letrd |
|- ( ( ph /\ i e. ( J ... M ) ) -> L <_ i ) |
| 70 |
|
elfzle2 |
|- ( i e. ( J ... M ) -> i <_ M ) |
| 71 |
70
|
adantl |
|- ( ( ph /\ i e. ( J ... M ) ) -> i <_ M ) |
| 72 |
50 53 55 69 71
|
elfzd |
|- ( ( ph /\ i e. ( J ... M ) ) -> i e. ( L ... M ) ) |
| 73 |
72 6
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) |
| 74 |
46 49 73
|
chvarfv |
|- ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) |
| 75 |
43 74 39
|
seqcl |
|- ( ph -> ( seq J ( x. , B ) ` M ) e. RR ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. RR ) |
| 77 |
9
|
rpred |
|- ( ph -> E e. RR ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ -. J = L ) -> E e. RR ) |
| 79 |
|
remulcl |
|- ( ( a e. RR /\ b e. RR ) -> ( a x. b ) e. RR ) |
| 80 |
79
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR ) ) -> ( a x. b ) e. RR ) |
| 81 |
|
simp1 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. RR ) |
| 82 |
81
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. CC ) |
| 83 |
|
simp2 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. RR ) |
| 84 |
83
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. CC ) |
| 85 |
|
simp3 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. RR ) |
| 86 |
85
|
recnd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. CC ) |
| 87 |
82 84 86
|
mulassd |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) |
| 88 |
87
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR /\ c e. RR ) ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) |
| 89 |
59
|
zcnd |
|- ( ph -> J e. CC ) |
| 90 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 91 |
89 90
|
npcand |
|- ( ph -> ( ( J - 1 ) + 1 ) = J ) |
| 92 |
91
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( J - 1 ) + 1 ) ) = ( ZZ>= ` J ) ) |
| 93 |
43 92
|
eleqtrrd |
|- ( ph -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) |
| 95 |
4
|
adantr |
|- ( ( ph /\ -. J = L ) -> L e. ZZ ) |
| 96 |
59
|
adantr |
|- ( ( ph /\ -. J = L ) -> J e. ZZ ) |
| 97 |
|
1zzd |
|- ( ( ph /\ -. J = L ) -> 1 e. ZZ ) |
| 98 |
96 97
|
zsubcld |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ZZ ) |
| 99 |
|
simpr |
|- ( ( ph /\ -. J = L ) -> -. J = L ) |
| 100 |
|
eqcom |
|- ( J = L <-> L = J ) |
| 101 |
99 100
|
sylnib |
|- ( ( ph /\ -. J = L ) -> -. L = J ) |
| 102 |
56 60
|
leloed |
|- ( ph -> ( L <_ J <-> ( L < J \/ L = J ) ) ) |
| 103 |
65 102
|
mpbid |
|- ( ph -> ( L < J \/ L = J ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L < J \/ L = J ) ) |
| 105 |
|
orel2 |
|- ( -. L = J -> ( ( L < J \/ L = J ) -> L < J ) ) |
| 106 |
101 104 105
|
sylc |
|- ( ( ph /\ -. J = L ) -> L < J ) |
| 107 |
|
zltlem1 |
|- ( ( L e. ZZ /\ J e. ZZ ) -> ( L < J <-> L <_ ( J - 1 ) ) ) |
| 108 |
4 59 107
|
syl2anc |
|- ( ph -> ( L < J <-> L <_ ( J - 1 ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L < J <-> L <_ ( J - 1 ) ) ) |
| 110 |
106 109
|
mpbid |
|- ( ( ph /\ -. J = L ) -> L <_ ( J - 1 ) ) |
| 111 |
|
eluz2 |
|- ( ( J - 1 ) e. ( ZZ>= ` L ) <-> ( L e. ZZ /\ ( J - 1 ) e. ZZ /\ L <_ ( J - 1 ) ) ) |
| 112 |
95 98 110 111
|
syl3anbrc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( ZZ>= ` L ) ) |
| 113 |
|
nfv |
|- F/ i -. J = L |
| 114 |
2 113
|
nfan |
|- F/ i ( ph /\ -. J = L ) |
| 115 |
114 26
|
nfan |
|- F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) |
| 116 |
115 30
|
nfim |
|- F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
| 117 |
32
|
anbi2d |
|- ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) ) ) |
| 118 |
117 35
|
imbi12d |
|- ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) |
| 119 |
6
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) |
| 120 |
116 118 119
|
chvarfv |
|- ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) |
| 121 |
80 88 94 112 120
|
seqsplit |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) ) |
| 122 |
91
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) + 1 ) = J ) |
| 123 |
122
|
seqeq1d |
|- ( ( ph /\ -. J = L ) -> seq ( ( J - 1 ) + 1 ) ( x. , B ) = seq J ( x. , B ) ) |
| 124 |
123
|
fveq1d |
|- ( ( ph /\ -. J = L ) -> ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) = ( seq J ( x. , B ) ` M ) ) |
| 125 |
124
|
oveq2d |
|- ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) |
| 126 |
121 125
|
eqtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) |
| 127 |
|
nfv |
|- F/ i a e. ( L ... ( J - 1 ) ) |
| 128 |
114 127
|
nfan |
|- F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) |
| 129 |
128 30
|
nfim |
|- F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) |
| 130 |
|
eleq1w |
|- ( i = a -> ( i e. ( L ... ( J - 1 ) ) <-> a e. ( L ... ( J - 1 ) ) ) ) |
| 131 |
130
|
anbi2d |
|- ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) ) ) |
| 132 |
131 35
|
imbi12d |
|- ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) ) ) |
| 133 |
4
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L e. ZZ ) |
| 134 |
52
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. ZZ ) |
| 135 |
|
elfzelz |
|- ( i e. ( L ... ( J - 1 ) ) -> i e. ZZ ) |
| 136 |
135
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ZZ ) |
| 137 |
|
elfzle1 |
|- ( i e. ( L ... ( J - 1 ) ) -> L <_ i ) |
| 138 |
137
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L <_ i ) |
| 139 |
135
|
zred |
|- ( i e. ( L ... ( J - 1 ) ) -> i e. RR ) |
| 140 |
139
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. RR ) |
| 141 |
60
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J e. RR ) |
| 142 |
52
|
zred |
|- ( ph -> M e. RR ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. RR ) |
| 144 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 145 |
60 144
|
resubcld |
|- ( ph -> ( J - 1 ) e. RR ) |
| 146 |
145
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) e. RR ) |
| 147 |
|
elfzle2 |
|- ( i e. ( L ... ( J - 1 ) ) -> i <_ ( J - 1 ) ) |
| 148 |
147
|
adantl |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ ( J - 1 ) ) |
| 149 |
60
|
lem1d |
|- ( ph -> ( J - 1 ) <_ J ) |
| 150 |
149
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) <_ J ) |
| 151 |
140 146 141 148 150
|
letrd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ J ) |
| 152 |
|
elfzle2 |
|- ( J e. ( L ... M ) -> J <_ M ) |
| 153 |
10 152
|
syl |
|- ( ph -> J <_ M ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J <_ M ) |
| 155 |
140 141 143 151 154
|
letrd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ M ) |
| 156 |
133 134 136 138 155
|
elfzd |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ( L ... M ) ) |
| 157 |
156 6
|
syldan |
|- ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) |
| 158 |
157
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) |
| 159 |
129 132 158
|
chvarfv |
|- ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) |
| 160 |
38
|
adantl |
|- ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
| 161 |
112 159 160
|
seqcl |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) e. RR ) |
| 162 |
|
1red |
|- ( ( ph /\ -. J = L ) -> 1 e. RR ) |
| 163 |
|
eqid |
|- seq J ( x. , B ) = seq J ( x. , B ) |
| 164 |
43
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` J ) ) |
| 165 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` J ) -> M e. ( J ... M ) ) |
| 166 |
43 165
|
syl |
|- ( ph -> M e. ( J ... M ) ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( J ... M ) ) |
| 168 |
73
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) |
| 169 |
72 7
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) |
| 170 |
169
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) |
| 171 |
72 8
|
syldan |
|- ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) |
| 172 |
171
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) |
| 173 |
1 114 163 96 164 167 168 170 172
|
fmul01 |
|- ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq J ( x. , B ) ` M ) /\ ( seq J ( x. , B ) ` M ) <_ 1 ) ) |
| 174 |
173
|
simpld |
|- ( ( ph /\ -. J = L ) -> 0 <_ ( seq J ( x. , B ) ` M ) ) |
| 175 |
|
eqid |
|- seq L ( x. , B ) = seq L ( x. , B ) |
| 176 |
5
|
adantr |
|- ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` L ) ) |
| 177 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 178 |
59 177
|
zsubcld |
|- ( ph -> ( J - 1 ) e. ZZ ) |
| 179 |
4 52 178
|
3jca |
|- ( ph -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) |
| 180 |
179
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) |
| 181 |
145 60 142
|
3jca |
|- ( ph -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) |
| 182 |
181
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) |
| 183 |
60
|
adantr |
|- ( ( ph /\ -. J = L ) -> J e. RR ) |
| 184 |
183
|
lem1d |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ J ) |
| 185 |
153
|
adantr |
|- ( ( ph /\ -. J = L ) -> J <_ M ) |
| 186 |
184 185
|
jca |
|- ( ( ph /\ -. J = L ) -> ( ( J - 1 ) <_ J /\ J <_ M ) ) |
| 187 |
|
letr |
|- ( ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) -> ( ( ( J - 1 ) <_ J /\ J <_ M ) -> ( J - 1 ) <_ M ) ) |
| 188 |
182 186 187
|
sylc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ M ) |
| 189 |
110 188
|
jca |
|- ( ( ph /\ -. J = L ) -> ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) |
| 190 |
|
elfz2 |
|- ( ( J - 1 ) e. ( L ... M ) <-> ( ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) /\ ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) ) |
| 191 |
180 189 190
|
sylanbrc |
|- ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( L ... M ) ) |
| 192 |
7
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) |
| 193 |
8
|
adantlr |
|- ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) |
| 194 |
1 114 175 95 176 191 119 192 193
|
fmul01 |
|- ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq L ( x. , B ) ` ( J - 1 ) ) /\ ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) ) |
| 195 |
194
|
simprd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) |
| 196 |
161 162 76 174 195
|
lemul1ad |
|- ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) |
| 197 |
126 196
|
eqbrtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) |
| 198 |
76
|
recnd |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. CC ) |
| 199 |
198
|
mullidd |
|- ( ( ph /\ -. J = L ) -> ( 1 x. ( seq J ( x. , B ) ` M ) ) = ( seq J ( x. , B ) ` M ) ) |
| 200 |
197 199
|
breqtrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( seq J ( x. , B ) ` M ) ) |
| 201 |
1 2 163 59 43 73 169 171 9 11
|
fmul01lt1lem1 |
|- ( ph -> ( seq J ( x. , B ) ` M ) < E ) |
| 202 |
201
|
adantr |
|- ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) < E ) |
| 203 |
41 76 78 200 202
|
lelttrd |
|- ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) < E ) |
| 204 |
25 203
|
eqbrtrid |
|- ( ( ph /\ -. J = L ) -> ( A ` M ) < E ) |
| 205 |
24 204
|
pm2.61dan |
|- ( ph -> ( A ` M ) < E ) |