Step |
Hyp |
Ref |
Expression |
1 |
|
fmuldfeq.1 |
|- F/ i ph |
2 |
|
fmuldfeq.2 |
|- F/_ t Y |
3 |
|
fmuldfeq.3 |
|- P = ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
4 |
|
fmuldfeq.4 |
|- X = ( seq 1 ( P , U ) ` M ) |
5 |
|
fmuldfeq.5 |
|- F = ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
6 |
|
fmuldfeq.6 |
|- Z = ( t e. T |-> ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
7 |
|
fmuldfeq.7 |
|- ( ph -> T e. _V ) |
8 |
|
fmuldfeq.8 |
|- ( ph -> M e. NN ) |
9 |
|
fmuldfeq.9 |
|- ( ph -> U : ( 1 ... M ) --> Y ) |
10 |
|
fmuldfeq.10 |
|- ( ( ph /\ f e. Y ) -> f : T --> RR ) |
11 |
|
fmuldfeq.11 |
|- ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
12 |
|
1zzd |
|- ( ( ph /\ t e. T ) -> 1 e. ZZ ) |
13 |
8
|
nnzd |
|- ( ph -> M e. ZZ ) |
14 |
13
|
adantr |
|- ( ( ph /\ t e. T ) -> M e. ZZ ) |
15 |
8
|
nnge1d |
|- ( ph -> 1 <_ M ) |
16 |
15
|
adantr |
|- ( ( ph /\ t e. T ) -> 1 <_ M ) |
17 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
18 |
|
leid |
|- ( M e. RR -> M <_ M ) |
19 |
8 17 18
|
3syl |
|- ( ph -> M <_ M ) |
20 |
19
|
adantr |
|- ( ( ph /\ t e. T ) -> M <_ M ) |
21 |
12 14 14 16 20
|
elfzd |
|- ( ( ph /\ t e. T ) -> M e. ( 1 ... M ) ) |
22 |
8
|
3ad2ant1 |
|- ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> M e. NN ) |
23 |
|
eleq1 |
|- ( m = 1 -> ( m e. ( 1 ... M ) <-> 1 e. ( 1 ... M ) ) ) |
24 |
23
|
3anbi3d |
|- ( m = 1 -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) ) ) |
25 |
|
fveq2 |
|- ( m = 1 -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` 1 ) ) |
26 |
25
|
fveq1d |
|- ( m = 1 -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` 1 ) ` t ) ) |
27 |
|
fveq2 |
|- ( m = 1 -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
28 |
26 27
|
eqeq12d |
|- ( m = 1 -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) ) |
29 |
24 28
|
imbi12d |
|- ( m = 1 -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) ) ) |
30 |
|
eleq1 |
|- ( m = n -> ( m e. ( 1 ... M ) <-> n e. ( 1 ... M ) ) ) |
31 |
30
|
3anbi3d |
|- ( m = n -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ n e. ( 1 ... M ) ) ) ) |
32 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` n ) ) |
33 |
32
|
fveq1d |
|- ( m = n -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` n ) ` t ) ) |
34 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
35 |
33 34
|
eqeq12d |
|- ( m = n -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
36 |
31 35
|
imbi12d |
|- ( m = n -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) ) |
37 |
|
eleq1 |
|- ( m = ( n + 1 ) -> ( m e. ( 1 ... M ) <-> ( n + 1 ) e. ( 1 ... M ) ) ) |
38 |
37
|
3anbi3d |
|- ( m = ( n + 1 ) -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) ) |
39 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` ( n + 1 ) ) ) |
40 |
39
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) ) |
41 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
42 |
40 41
|
eqeq12d |
|- ( m = ( n + 1 ) -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) |
43 |
38 42
|
imbi12d |
|- ( m = ( n + 1 ) -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) ) |
44 |
|
eleq1 |
|- ( m = M -> ( m e. ( 1 ... M ) <-> M e. ( 1 ... M ) ) ) |
45 |
44
|
3anbi3d |
|- ( m = M -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ M e. ( 1 ... M ) ) ) ) |
46 |
|
fveq2 |
|- ( m = M -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` M ) ) |
47 |
46
|
fveq1d |
|- ( m = M -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) ) |
48 |
|
fveq2 |
|- ( m = M -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
49 |
47 48
|
eqeq12d |
|- ( m = M -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) |
50 |
45 49
|
imbi12d |
|- ( m = M -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) ) |
51 |
|
1z |
|- 1 e. ZZ |
52 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , ( F ` t ) ) ` 1 ) = ( ( F ` t ) ` 1 ) ) |
53 |
51 52
|
ax-mp |
|- ( seq 1 ( x. , ( F ` t ) ) ` 1 ) = ( ( F ` t ) ` 1 ) |
54 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
55 |
|
1le1 |
|- 1 <_ 1 |
56 |
55
|
a1i |
|- ( ph -> 1 <_ 1 ) |
57 |
54 13 54 56 15
|
elfzd |
|- ( ph -> 1 e. ( 1 ... M ) ) |
58 |
|
nfv |
|- F/ i t e. T |
59 |
|
nfcv |
|- F/_ i T |
60 |
|
nfmpt1 |
|- F/_ i ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
61 |
59 60
|
nfmpt |
|- F/_ i ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
62 |
5 61
|
nfcxfr |
|- F/_ i F |
63 |
|
nfcv |
|- F/_ i t |
64 |
62 63
|
nffv |
|- F/_ i ( F ` t ) |
65 |
|
nfcv |
|- F/_ i 1 |
66 |
64 65
|
nffv |
|- F/_ i ( ( F ` t ) ` 1 ) |
67 |
|
nffvmpt1 |
|- F/_ i ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) |
68 |
66 67
|
nfeq |
|- F/ i ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) |
69 |
58 68
|
nfim |
|- F/ i ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
70 |
|
fveq2 |
|- ( i = 1 -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` 1 ) ) |
71 |
|
fveq2 |
|- ( i = 1 -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
72 |
70 71
|
eqeq12d |
|- ( i = 1 -> ( ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) <-> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
73 |
72
|
imbi2d |
|- ( i = 1 -> ( ( t e. T -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) <-> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) ) |
74 |
|
ovex |
|- ( 1 ... M ) e. _V |
75 |
74
|
mptex |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V |
76 |
5
|
fvmpt2 |
|- ( ( t e. T /\ ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
77 |
75 76
|
mpan2 |
|- ( t e. T -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
78 |
77
|
fveq1d |
|- ( t e. T -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
79 |
69 73 78
|
vtoclg1f |
|- ( 1 e. ( 1 ... M ) -> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
80 |
57 79
|
syl |
|- ( ph -> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
81 |
80
|
imp |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
82 |
|
eqid |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
83 |
|
fveq2 |
|- ( i = 1 -> ( U ` i ) = ( U ` 1 ) ) |
84 |
83
|
fveq1d |
|- ( i = 1 -> ( ( U ` i ) ` t ) = ( ( U ` 1 ) ` t ) ) |
85 |
57
|
adantr |
|- ( ( ph /\ t e. T ) -> 1 e. ( 1 ... M ) ) |
86 |
9 57
|
ffvelrnd |
|- ( ph -> ( U ` 1 ) e. Y ) |
87 |
86
|
ancli |
|- ( ph -> ( ph /\ ( U ` 1 ) e. Y ) ) |
88 |
|
eleq1 |
|- ( f = ( U ` 1 ) -> ( f e. Y <-> ( U ` 1 ) e. Y ) ) |
89 |
88
|
anbi2d |
|- ( f = ( U ` 1 ) -> ( ( ph /\ f e. Y ) <-> ( ph /\ ( U ` 1 ) e. Y ) ) ) |
90 |
|
feq1 |
|- ( f = ( U ` 1 ) -> ( f : T --> RR <-> ( U ` 1 ) : T --> RR ) ) |
91 |
89 90
|
imbi12d |
|- ( f = ( U ` 1 ) -> ( ( ( ph /\ f e. Y ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` 1 ) e. Y ) -> ( U ` 1 ) : T --> RR ) ) ) |
92 |
10
|
a1i |
|- ( f e. Y -> ( ( ph /\ f e. Y ) -> f : T --> RR ) ) |
93 |
91 92
|
vtoclga |
|- ( ( U ` 1 ) e. Y -> ( ( ph /\ ( U ` 1 ) e. Y ) -> ( U ` 1 ) : T --> RR ) ) |
94 |
86 87 93
|
sylc |
|- ( ph -> ( U ` 1 ) : T --> RR ) |
95 |
94
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( ( U ` 1 ) ` t ) e. RR ) |
96 |
82 84 85 95
|
fvmptd3 |
|- ( ( ph /\ t e. T ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) = ( ( U ` 1 ) ` t ) ) |
97 |
81 96
|
eqtrd |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( U ` 1 ) ` t ) ) |
98 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( P , U ) ` 1 ) = ( U ` 1 ) ) |
99 |
51 98
|
ax-mp |
|- ( seq 1 ( P , U ) ` 1 ) = ( U ` 1 ) |
100 |
99
|
fveq1i |
|- ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( ( U ` 1 ) ` t ) |
101 |
97 100
|
eqtr4di |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( seq 1 ( P , U ) ` 1 ) ` t ) ) |
102 |
53 101
|
eqtr2id |
|- ( ( ph /\ t e. T ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
103 |
102
|
3adant3 |
|- ( ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
104 |
|
simp31 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ph ) |
105 |
|
simp1 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> n e. NN ) |
106 |
|
simp33 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n + 1 ) e. ( 1 ... M ) ) |
107 |
105 106
|
jca |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... M ) ) ) |
108 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
109 |
108
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
110 |
109
|
anim1i |
|- ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... M ) ) ) |
111 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... M ) ) -> n e. ( 1 ... M ) ) |
112 |
107 110 111
|
3syl |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> n e. ( 1 ... M ) ) |
113 |
|
simp32 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> t e. T ) |
114 |
|
simp2 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
115 |
104 113 112 114
|
mp3and |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
116 |
112 106 115
|
3jca |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
117 |
|
nfv |
|- F/ f ph |
118 |
|
nfv |
|- F/ f n e. ( 1 ... M ) |
119 |
|
nfv |
|- F/ f ( n + 1 ) e. ( 1 ... M ) |
120 |
|
nfcv |
|- F/_ f 1 |
121 |
|
nfmpo1 |
|- F/_ f ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
122 |
3 121
|
nfcxfr |
|- F/_ f P |
123 |
|
nfcv |
|- F/_ f U |
124 |
120 122 123
|
nfseq |
|- F/_ f seq 1 ( P , U ) |
125 |
|
nfcv |
|- F/_ f n |
126 |
124 125
|
nffv |
|- F/_ f ( seq 1 ( P , U ) ` n ) |
127 |
|
nfcv |
|- F/_ f t |
128 |
126 127
|
nffv |
|- F/_ f ( ( seq 1 ( P , U ) ` n ) ` t ) |
129 |
|
nfcv |
|- F/_ f ( seq 1 ( x. , ( F ` t ) ) ` n ) |
130 |
128 129
|
nfeq |
|- F/ f ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) |
131 |
118 119 130
|
nf3an |
|- F/ f ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
132 |
117 131
|
nfan |
|- F/ f ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
133 |
|
nfv |
|- F/ g ph |
134 |
|
nfv |
|- F/ g n e. ( 1 ... M ) |
135 |
|
nfv |
|- F/ g ( n + 1 ) e. ( 1 ... M ) |
136 |
|
nfcv |
|- F/_ g 1 |
137 |
|
nfmpo2 |
|- F/_ g ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
138 |
3 137
|
nfcxfr |
|- F/_ g P |
139 |
|
nfcv |
|- F/_ g U |
140 |
136 138 139
|
nfseq |
|- F/_ g seq 1 ( P , U ) |
141 |
|
nfcv |
|- F/_ g n |
142 |
140 141
|
nffv |
|- F/_ g ( seq 1 ( P , U ) ` n ) |
143 |
|
nfcv |
|- F/_ g t |
144 |
142 143
|
nffv |
|- F/_ g ( ( seq 1 ( P , U ) ` n ) ` t ) |
145 |
|
nfcv |
|- F/_ g ( seq 1 ( x. , ( F ` t ) ) ` n ) |
146 |
144 145
|
nfeq |
|- F/ g ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) |
147 |
134 135 146
|
nf3an |
|- F/ g ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
148 |
133 147
|
nfan |
|- F/ g ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
149 |
7
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> T e. _V ) |
150 |
9
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> U : ( 1 ... M ) --> Y ) |
151 |
11
|
3adant1r |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
152 |
|
simpr1 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> n e. ( 1 ... M ) ) |
153 |
|
simpr2 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> ( n + 1 ) e. ( 1 ... M ) ) |
154 |
|
simpr3 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
155 |
10
|
adantlr |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ f e. Y ) -> f : T --> RR ) |
156 |
132 148 2 3 5 149 150 151 152 153 154 155
|
fmuldfeqlem1 |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ t e. T ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
157 |
104 116 113 156
|
syl21anc |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
158 |
157
|
3exp |
|- ( n e. NN -> ( ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) -> ( ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) ) |
159 |
29 36 43 50 103 158
|
nnind |
|- ( M e. NN -> ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) |
160 |
22 159
|
mpcom |
|- ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
161 |
21 160
|
mpd3an3 |
|- ( ( ph /\ t e. T ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
162 |
4
|
fveq1i |
|- ( X ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) |
163 |
162
|
a1i |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) ) |
164 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
165 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
166 |
8 165
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ t e. T ) -> M e. ( ZZ>= ` 1 ) ) |
168 |
1 58
|
nfan |
|- F/ i ( ph /\ t e. T ) |
169 |
|
nfv |
|- F/ i k e. ( 1 ... M ) |
170 |
168 169
|
nfan |
|- F/ i ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) |
171 |
|
nfcv |
|- F/_ i k |
172 |
64 171
|
nffv |
|- F/_ i ( ( F ` t ) ` k ) |
173 |
172
|
nfel1 |
|- F/ i ( ( F ` t ) ` k ) e. RR |
174 |
170 173
|
nfim |
|- F/ i ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) |
175 |
|
eleq1 |
|- ( i = k -> ( i e. ( 1 ... M ) <-> k e. ( 1 ... M ) ) ) |
176 |
175
|
anbi2d |
|- ( i = k -> ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) <-> ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) ) ) |
177 |
|
fveq2 |
|- ( i = k -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` k ) ) |
178 |
177
|
eleq1d |
|- ( i = k -> ( ( ( F ` t ) ` i ) e. RR <-> ( ( F ` t ) ` k ) e. RR ) ) |
179 |
176 178
|
imbi12d |
|- ( i = k -> ( ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) <-> ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) ) ) |
180 |
78
|
ad2antlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
181 |
|
simpr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> i e. ( 1 ... M ) ) |
182 |
9
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) e. Y ) |
183 |
|
simpl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ph ) |
184 |
183 182
|
jca |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ph /\ ( U ` i ) e. Y ) ) |
185 |
|
eleq1 |
|- ( f = ( U ` i ) -> ( f e. Y <-> ( U ` i ) e. Y ) ) |
186 |
185
|
anbi2d |
|- ( f = ( U ` i ) -> ( ( ph /\ f e. Y ) <-> ( ph /\ ( U ` i ) e. Y ) ) ) |
187 |
|
feq1 |
|- ( f = ( U ` i ) -> ( f : T --> RR <-> ( U ` i ) : T --> RR ) ) |
188 |
186 187
|
imbi12d |
|- ( f = ( U ` i ) -> ( ( ( ph /\ f e. Y ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) ) |
189 |
188 92
|
vtoclga |
|- ( ( U ` i ) e. Y -> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) |
190 |
182 184 189
|
sylc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
191 |
190
|
adantlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
192 |
|
simplr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
193 |
191 192
|
ffvelrnd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) e. RR ) |
194 |
82
|
fvmpt2 |
|- ( ( i e. ( 1 ... M ) /\ ( ( U ` i ) ` t ) e. RR ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
195 |
181 193 194
|
syl2anc |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
196 |
195 193
|
eqeltrd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) e. RR ) |
197 |
180 196
|
eqeltrd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) |
198 |
174 179 197
|
chvarfv |
|- ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) |
199 |
|
remulcl |
|- ( ( k e. RR /\ b e. RR ) -> ( k x. b ) e. RR ) |
200 |
199
|
adantl |
|- ( ( ( ph /\ t e. T ) /\ ( k e. RR /\ b e. RR ) ) -> ( k x. b ) e. RR ) |
201 |
167 198 200
|
seqcl |
|- ( ( ph /\ t e. T ) -> ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) |
202 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
203 |
164 201 202
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
204 |
161 163 203
|
3eqtr4d |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( Z ` t ) ) |