Metamath Proof Explorer


Theorem fnasrn

Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfmpt.1
|- B e. _V
Assertion fnasrn
|- ( x e. A |-> B ) = ran ( x e. A |-> <. x , B >. )

Proof

Step Hyp Ref Expression
1 dfmpt.1
 |-  B e. _V
2 1 dfmpt
 |-  ( x e. A |-> B ) = U_ x e. A { <. x , B >. }
3 eqid
 |-  ( x e. A |-> <. x , B >. ) = ( x e. A |-> <. x , B >. )
4 3 rnmpt
 |-  ran ( x e. A |-> <. x , B >. ) = { y | E. x e. A y = <. x , B >. }
5 velsn
 |-  ( y e. { <. x , B >. } <-> y = <. x , B >. )
6 5 rexbii
 |-  ( E. x e. A y e. { <. x , B >. } <-> E. x e. A y = <. x , B >. )
7 6 abbii
 |-  { y | E. x e. A y e. { <. x , B >. } } = { y | E. x e. A y = <. x , B >. }
8 4 7 eqtr4i
 |-  ran ( x e. A |-> <. x , B >. ) = { y | E. x e. A y e. { <. x , B >. } }
9 df-iun
 |-  U_ x e. A { <. x , B >. } = { y | E. x e. A y e. { <. x , B >. } }
10 8 9 eqtr4i
 |-  ran ( x e. A |-> <. x , B >. ) = U_ x e. A { <. x , B >. }
11 2 10 eqtr4i
 |-  ( x e. A |-> B ) = ran ( x e. A |-> <. x , B >. )