Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | fnbr | |- ( ( F Fn A /\ B F C ) -> B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel | |- ( F Fn A -> Rel F ) |
|
2 | releldm | |- ( ( Rel F /\ B F C ) -> B e. dom F ) |
|
3 | 1 2 | sylan | |- ( ( F Fn A /\ B F C ) -> B e. dom F ) |
4 | fndm | |- ( F Fn A -> dom F = A ) |
|
5 | 4 | eleq2d | |- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
6 | 5 | biimpa | |- ( ( F Fn A /\ B e. dom F ) -> B e. A ) |
7 | 3 6 | syldan | |- ( ( F Fn A /\ B F C ) -> B e. A ) |