Metamath Proof Explorer


Theorem fnbrfvb2

Description: Version of fnbrfvb for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb for the form when F is seen as a binary operation. (Contributed by BJ, 15-Feb-2022)

Ref Expression
Assertion fnbrfvb2
|- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( F ` <. A , B >. ) = C <-> <. A , B >. F C ) )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( V X. W ) )
2 fnbrfvb
 |-  ( ( F Fn ( V X. W ) /\ <. A , B >. e. ( V X. W ) ) -> ( ( F ` <. A , B >. ) = C <-> <. A , B >. F C ) )
3 1 2 sylan2
 |-  ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( F ` <. A , B >. ) = C <-> <. A , B >. F C ) )