Description: Value of a binary operation expressed as a binary relation. See also fnbrfvb for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnbrovb | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( A F B ) = C <-> <. A , B >. F C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 2 | 1 | eqeq1i | |- ( ( A F B ) = C <-> ( F ` <. A , B >. ) = C ) |
| 3 | fnbrfvb2 | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( F ` <. A , B >. ) = C <-> <. A , B >. F C ) ) |
|
| 4 | 2 3 | bitrid | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( A F B ) = C <-> <. A , B >. F C ) ) |