Description: Value of a binary operation expressed as a binary relation. See also fnbrfvb for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | fnbrovb | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( A F B ) = C <-> <. A , B >. F C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
2 | 1 | eqeq1i | |- ( ( A F B ) = C <-> ( F ` <. A , B >. ) = C ) |
3 | fnbrfvb2 | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( F ` <. A , B >. ) = C <-> <. A , B >. F C ) ) |
|
4 | 2 3 | bitrid | |- ( ( F Fn ( V X. W ) /\ ( A e. V /\ B e. W ) ) -> ( ( A F B ) = C <-> <. A , B >. F C ) ) |