Metamath Proof Explorer


Theorem fncnvima2

Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fncnvima2
|- ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } )

Proof

Step Hyp Ref Expression
1 elpreima
 |-  ( F Fn A -> ( x e. ( `' F " B ) <-> ( x e. A /\ ( F ` x ) e. B ) ) )
2 1 abbi2dv
 |-  ( F Fn A -> ( `' F " B ) = { x | ( x e. A /\ ( F ` x ) e. B ) } )
3 df-rab
 |-  { x e. A | ( F ` x ) e. B } = { x | ( x e. A /\ ( F ` x ) e. B ) }
4 2 3 eqtr4di
 |-  ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } )