Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fncnvima2 | |- ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima | |- ( F Fn A -> ( x e. ( `' F " B ) <-> ( x e. A /\ ( F ` x ) e. B ) ) ) |
|
2 | 1 | abbi2dv | |- ( F Fn A -> ( `' F " B ) = { x | ( x e. A /\ ( F ` x ) e. B ) } ) |
3 | df-rab | |- { x e. A | ( F ` x ) e. B } = { x | ( x e. A /\ ( F ` x ) e. B ) } |
|
4 | 2 3 | eqtr4di | |- ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } ) |