Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
2 |
|
funco |
|- ( ( Fun F /\ Fun G ) -> Fun ( F o. G ) ) |
3 |
1 2
|
sylan |
|- ( ( F Fn A /\ Fun G ) -> Fun ( F o. G ) ) |
4 |
3
|
funfnd |
|- ( ( F Fn A /\ Fun G ) -> ( F o. G ) Fn dom ( F o. G ) ) |
5 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
6 |
5
|
adantr |
|- ( ( F Fn A /\ Fun G ) -> dom F = A ) |
7 |
6
|
eqcomd |
|- ( ( F Fn A /\ Fun G ) -> A = dom F ) |
8 |
7
|
imaeq2d |
|- ( ( F Fn A /\ Fun G ) -> ( `' G " A ) = ( `' G " dom F ) ) |
9 |
|
dmco |
|- dom ( F o. G ) = ( `' G " dom F ) |
10 |
8 9
|
eqtr4di |
|- ( ( F Fn A /\ Fun G ) -> ( `' G " A ) = dom ( F o. G ) ) |
11 |
10
|
fneq2d |
|- ( ( F Fn A /\ Fun G ) -> ( ( F o. G ) Fn ( `' G " A ) <-> ( F o. G ) Fn dom ( F o. G ) ) ) |
12 |
4 11
|
mpbird |
|- ( ( F Fn A /\ Fun G ) -> ( F o. G ) Fn ( `' G " A ) ) |