| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( CC ^pm S ) e. _V | 
						
							| 2 | 1 | rabex |  |-  { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } e. _V | 
						
							| 3 |  | eqid |  |-  ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) | 
						
							| 4 | 2 3 | fnmpti |  |-  ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 | 
						
							| 5 |  | cpnfval |  |-  ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) | 
						
							| 6 | 5 | fneq1d |  |-  ( S C_ CC -> ( ( C^n ` S ) Fn NN0 <-> ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 ) ) | 
						
							| 7 | 4 6 | mpbiri |  |-  ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |