Step |
Hyp |
Ref |
Expression |
1 |
|
dffn2 |
|- ( F Fn A <-> F : A --> _V ) |
2 |
|
fssxp |
|- ( F : A --> _V -> F C_ ( A X. _V ) ) |
3 |
1 2
|
sylbi |
|- ( F Fn A -> F C_ ( A X. _V ) ) |
4 |
|
ssdif0 |
|- ( F C_ ( A X. _V ) <-> ( F \ ( A X. _V ) ) = (/) ) |
5 |
3 4
|
sylib |
|- ( F Fn A -> ( F \ ( A X. _V ) ) = (/) ) |
6 |
5
|
uneq2d |
|- ( F Fn A -> ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) = ( ( F \ _I ) u. (/) ) ) |
7 |
|
un0 |
|- ( ( F \ _I ) u. (/) ) = ( F \ _I ) |
8 |
6 7
|
eqtr2di |
|- ( F Fn A -> ( F \ _I ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) ) |
9 |
|
df-res |
|- ( _I |` A ) = ( _I i^i ( A X. _V ) ) |
10 |
9
|
difeq2i |
|- ( F \ ( _I |` A ) ) = ( F \ ( _I i^i ( A X. _V ) ) ) |
11 |
|
difindi |
|- ( F \ ( _I i^i ( A X. _V ) ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
12 |
10 11
|
eqtri |
|- ( F \ ( _I |` A ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
13 |
8 12
|
eqtr4di |
|- ( F Fn A -> ( F \ _I ) = ( F \ ( _I |` A ) ) ) |
14 |
13
|
dmeqd |
|- ( F Fn A -> dom ( F \ _I ) = dom ( F \ ( _I |` A ) ) ) |
15 |
|
fnresi |
|- ( _I |` A ) Fn A |
16 |
|
fndmdif |
|- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
17 |
15 16
|
mpan2 |
|- ( F Fn A -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
18 |
|
fvresi |
|- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
19 |
18
|
neeq2d |
|- ( x e. A -> ( ( F ` x ) =/= ( ( _I |` A ) ` x ) <-> ( F ` x ) =/= x ) ) |
20 |
19
|
rabbiia |
|- { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } |
21 |
20
|
a1i |
|- ( F Fn A -> { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } ) |
22 |
14 17 21
|
3eqtrd |
|- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |