| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn2 |
|- ( F Fn A <-> F : A --> _V ) |
| 2 |
|
fssxp |
|- ( F : A --> _V -> F C_ ( A X. _V ) ) |
| 3 |
1 2
|
sylbi |
|- ( F Fn A -> F C_ ( A X. _V ) ) |
| 4 |
|
ssdif0 |
|- ( F C_ ( A X. _V ) <-> ( F \ ( A X. _V ) ) = (/) ) |
| 5 |
3 4
|
sylib |
|- ( F Fn A -> ( F \ ( A X. _V ) ) = (/) ) |
| 6 |
5
|
uneq2d |
|- ( F Fn A -> ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) = ( ( F \ _I ) u. (/) ) ) |
| 7 |
|
un0 |
|- ( ( F \ _I ) u. (/) ) = ( F \ _I ) |
| 8 |
6 7
|
eqtr2di |
|- ( F Fn A -> ( F \ _I ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) ) |
| 9 |
|
df-res |
|- ( _I |` A ) = ( _I i^i ( A X. _V ) ) |
| 10 |
9
|
difeq2i |
|- ( F \ ( _I |` A ) ) = ( F \ ( _I i^i ( A X. _V ) ) ) |
| 11 |
|
difindi |
|- ( F \ ( _I i^i ( A X. _V ) ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
| 12 |
10 11
|
eqtri |
|- ( F \ ( _I |` A ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
| 13 |
8 12
|
eqtr4di |
|- ( F Fn A -> ( F \ _I ) = ( F \ ( _I |` A ) ) ) |
| 14 |
13
|
dmeqd |
|- ( F Fn A -> dom ( F \ _I ) = dom ( F \ ( _I |` A ) ) ) |
| 15 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 16 |
|
fndmdif |
|- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
| 17 |
15 16
|
mpan2 |
|- ( F Fn A -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
| 18 |
|
fvresi |
|- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
| 19 |
18
|
neeq2d |
|- ( x e. A -> ( ( F ` x ) =/= ( ( _I |` A ) ` x ) <-> ( F ` x ) =/= x ) ) |
| 20 |
19
|
rabbiia |
|- { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } |
| 21 |
20
|
a1i |
|- ( F Fn A -> { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } ) |
| 22 |
14 17 21
|
3eqtrd |
|- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |