Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
|- ( F \ G ) C_ F |
2 |
|
dmss |
|- ( ( F \ G ) C_ F -> dom ( F \ G ) C_ dom F ) |
3 |
1 2
|
ax-mp |
|- dom ( F \ G ) C_ dom F |
4 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
5 |
4
|
adantr |
|- ( ( F Fn A /\ G Fn A ) -> dom F = A ) |
6 |
3 5
|
sseqtrid |
|- ( ( F Fn A /\ G Fn A ) -> dom ( F \ G ) C_ A ) |
7 |
|
sseqin2 |
|- ( dom ( F \ G ) C_ A <-> ( A i^i dom ( F \ G ) ) = dom ( F \ G ) ) |
8 |
6 7
|
sylib |
|- ( ( F Fn A /\ G Fn A ) -> ( A i^i dom ( F \ G ) ) = dom ( F \ G ) ) |
9 |
|
vex |
|- x e. _V |
10 |
9
|
eldm |
|- ( x e. dom ( F \ G ) <-> E. y x ( F \ G ) y ) |
11 |
|
eqcom |
|- ( ( F ` x ) = ( G ` x ) <-> ( G ` x ) = ( F ` x ) ) |
12 |
|
fnbrfvb |
|- ( ( G Fn A /\ x e. A ) -> ( ( G ` x ) = ( F ` x ) <-> x G ( F ` x ) ) ) |
13 |
11 12
|
syl5bb |
|- ( ( G Fn A /\ x e. A ) -> ( ( F ` x ) = ( G ` x ) <-> x G ( F ` x ) ) ) |
14 |
13
|
adantll |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( ( F ` x ) = ( G ` x ) <-> x G ( F ` x ) ) ) |
15 |
14
|
necon3abid |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( ( F ` x ) =/= ( G ` x ) <-> -. x G ( F ` x ) ) ) |
16 |
|
fvex |
|- ( F ` x ) e. _V |
17 |
|
breq2 |
|- ( y = ( F ` x ) -> ( x G y <-> x G ( F ` x ) ) ) |
18 |
17
|
notbid |
|- ( y = ( F ` x ) -> ( -. x G y <-> -. x G ( F ` x ) ) ) |
19 |
16 18
|
ceqsexv |
|- ( E. y ( y = ( F ` x ) /\ -. x G y ) <-> -. x G ( F ` x ) ) |
20 |
15 19
|
bitr4di |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( ( F ` x ) =/= ( G ` x ) <-> E. y ( y = ( F ` x ) /\ -. x G y ) ) ) |
21 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
22 |
|
fnbrfvb |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
23 |
21 22
|
syl5bb |
|- ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
24 |
23
|
adantlr |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
25 |
24
|
anbi1d |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( ( y = ( F ` x ) /\ -. x G y ) <-> ( x F y /\ -. x G y ) ) ) |
26 |
|
brdif |
|- ( x ( F \ G ) y <-> ( x F y /\ -. x G y ) ) |
27 |
25 26
|
bitr4di |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( ( y = ( F ` x ) /\ -. x G y ) <-> x ( F \ G ) y ) ) |
28 |
27
|
exbidv |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( E. y ( y = ( F ` x ) /\ -. x G y ) <-> E. y x ( F \ G ) y ) ) |
29 |
20 28
|
bitr2d |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( E. y x ( F \ G ) y <-> ( F ` x ) =/= ( G ` x ) ) ) |
30 |
10 29
|
syl5bb |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> ( x e. dom ( F \ G ) <-> ( F ` x ) =/= ( G ` x ) ) ) |
31 |
30
|
rabbi2dva |
|- ( ( F Fn A /\ G Fn A ) -> ( A i^i dom ( F \ G ) ) = { x e. A | ( F ` x ) =/= ( G ` x ) } ) |
32 |
8 31
|
eqtr3d |
|- ( ( F Fn A /\ G Fn A ) -> dom ( F \ G ) = { x e. A | ( F ` x ) =/= ( G ` x ) } ) |