Step |
Hyp |
Ref |
Expression |
1 |
|
fndmdif |
|- ( ( F Fn A /\ G Fn A ) -> dom ( F \ G ) = { x e. A | ( F ` x ) =/= ( G ` x ) } ) |
2 |
1
|
eqeq1d |
|- ( ( F Fn A /\ G Fn A ) -> ( dom ( F \ G ) = (/) <-> { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) ) ) |
3 |
|
rabeq0 |
|- ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> A. x e. A -. ( F ` x ) =/= ( G ` x ) ) |
4 |
|
nne |
|- ( -. ( F ` x ) =/= ( G ` x ) <-> ( F ` x ) = ( G ` x ) ) |
5 |
4
|
ralbii |
|- ( A. x e. A -. ( F ` x ) =/= ( G ` x ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
6 |
3 5
|
bitri |
|- ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
7 |
|
eqfnfv |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
8 |
6 7
|
bitr4id |
|- ( ( F Fn A /\ G Fn A ) -> ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> F = G ) ) |
9 |
2 8
|
bitrd |
|- ( ( F Fn A /\ G Fn A ) -> ( dom ( F \ G ) = (/) <-> F = G ) ) |