Step |
Hyp |
Ref |
Expression |
1 |
|
dffn5 |
|- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
2 |
1
|
biimpi |
|- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
3 |
|
df-mpt |
|- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
4 |
2 3
|
eqtrdi |
|- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
5 |
|
dffn5 |
|- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
6 |
5
|
biimpi |
|- ( G Fn A -> G = ( x e. A |-> ( G ` x ) ) ) |
7 |
|
df-mpt |
|- ( x e. A |-> ( G ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } |
8 |
6 7
|
eqtrdi |
|- ( G Fn A -> G = { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) |
9 |
4 8
|
ineqan12d |
|- ( ( F Fn A /\ G Fn A ) -> ( F i^i G ) = ( { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } i^i { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) ) |
10 |
|
inopab |
|- ( { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } i^i { <. x , y >. | ( x e. A /\ y = ( G ` x ) ) } ) = { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } |
11 |
9 10
|
eqtrdi |
|- ( ( F Fn A /\ G Fn A ) -> ( F i^i G ) = { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } ) |
12 |
11
|
dmeqd |
|- ( ( F Fn A /\ G Fn A ) -> dom ( F i^i G ) = dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } ) |
13 |
|
19.42v |
|- ( E. y ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( x e. A /\ E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) ) ) |
14 |
|
anandi |
|- ( ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) ) |
15 |
14
|
exbii |
|- ( E. y ( x e. A /\ ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) ) |
16 |
|
fvex |
|- ( F ` x ) e. _V |
17 |
|
eqeq1 |
|- ( y = ( F ` x ) -> ( y = ( G ` x ) <-> ( F ` x ) = ( G ` x ) ) ) |
18 |
16 17
|
ceqsexv |
|- ( E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) <-> ( F ` x ) = ( G ` x ) ) |
19 |
18
|
anbi2i |
|- ( ( x e. A /\ E. y ( y = ( F ` x ) /\ y = ( G ` x ) ) ) <-> ( x e. A /\ ( F ` x ) = ( G ` x ) ) ) |
20 |
13 15 19
|
3bitr3i |
|- ( E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) <-> ( x e. A /\ ( F ` x ) = ( G ` x ) ) ) |
21 |
20
|
abbii |
|- { x | E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x | ( x e. A /\ ( F ` x ) = ( G ` x ) ) } |
22 |
|
dmopab |
|- dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x | E. y ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } |
23 |
|
df-rab |
|- { x e. A | ( F ` x ) = ( G ` x ) } = { x | ( x e. A /\ ( F ` x ) = ( G ` x ) ) } |
24 |
21 22 23
|
3eqtr4i |
|- dom { <. x , y >. | ( ( x e. A /\ y = ( F ` x ) ) /\ ( x e. A /\ y = ( G ` x ) ) ) } = { x e. A | ( F ` x ) = ( G ` x ) } |
25 |
12 24
|
eqtrdi |
|- ( ( F Fn A /\ G Fn A ) -> dom ( F i^i G ) = { x e. A | ( F ` x ) = ( G ` x ) } ) |