Step |
Hyp |
Ref |
Expression |
1 |
|
fndifnfp |
|- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
2 |
1
|
eleq2d |
|- ( F Fn A -> ( X e. dom ( F \ _I ) <-> X e. { x e. A | ( F ` x ) =/= x } ) ) |
3 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
4 |
|
id |
|- ( x = X -> x = X ) |
5 |
3 4
|
neeq12d |
|- ( x = X -> ( ( F ` x ) =/= x <-> ( F ` X ) =/= X ) ) |
6 |
5
|
elrab3 |
|- ( X e. A -> ( X e. { x e. A | ( F ` x ) =/= x } <-> ( F ` X ) =/= X ) ) |
7 |
2 6
|
sylan9bb |
|- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |