Step |
Hyp |
Ref |
Expression |
1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
2 |
|
relssdmrn |
|- ( Rel F -> F C_ ( dom F X. ran F ) ) |
3 |
1 2
|
syl |
|- ( F Fn A -> F C_ ( dom F X. ran F ) ) |
4 |
3
|
adantr |
|- ( ( F Fn A /\ A e. B ) -> F C_ ( dom F X. ran F ) ) |
5 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
6 |
5
|
eleq1d |
|- ( F Fn A -> ( dom F e. B <-> A e. B ) ) |
7 |
6
|
biimpar |
|- ( ( F Fn A /\ A e. B ) -> dom F e. B ) |
8 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
9 |
|
funimaexg |
|- ( ( Fun F /\ A e. B ) -> ( F " A ) e. _V ) |
10 |
8 9
|
sylan |
|- ( ( F Fn A /\ A e. B ) -> ( F " A ) e. _V ) |
11 |
|
imadmrn |
|- ( F " dom F ) = ran F |
12 |
5
|
imaeq2d |
|- ( F Fn A -> ( F " dom F ) = ( F " A ) ) |
13 |
11 12
|
eqtr3id |
|- ( F Fn A -> ran F = ( F " A ) ) |
14 |
13
|
eleq1d |
|- ( F Fn A -> ( ran F e. _V <-> ( F " A ) e. _V ) ) |
15 |
14
|
biimpar |
|- ( ( F Fn A /\ ( F " A ) e. _V ) -> ran F e. _V ) |
16 |
10 15
|
syldan |
|- ( ( F Fn A /\ A e. B ) -> ran F e. _V ) |
17 |
|
xpexg |
|- ( ( dom F e. B /\ ran F e. _V ) -> ( dom F X. ran F ) e. _V ) |
18 |
7 16 17
|
syl2anc |
|- ( ( F Fn A /\ A e. B ) -> ( dom F X. ran F ) e. _V ) |
19 |
|
ssexg |
|- ( ( F C_ ( dom F X. ran F ) /\ ( dom F X. ran F ) e. _V ) -> F e. _V ) |
20 |
4 18 19
|
syl2anc |
|- ( ( F Fn A /\ A e. B ) -> F e. _V ) |