| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrel |  |-  ( F Fn A -> Rel F ) | 
						
							| 2 |  | relssdmrn |  |-  ( Rel F -> F C_ ( dom F X. ran F ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( F Fn A -> F C_ ( dom F X. ran F ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F Fn A /\ A e. B ) -> F C_ ( dom F X. ran F ) ) | 
						
							| 5 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 6 | 5 | eleq1d |  |-  ( F Fn A -> ( dom F e. B <-> A e. B ) ) | 
						
							| 7 | 6 | biimpar |  |-  ( ( F Fn A /\ A e. B ) -> dom F e. B ) | 
						
							| 8 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 9 |  | funimaexg |  |-  ( ( Fun F /\ A e. B ) -> ( F " A ) e. _V ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( F Fn A /\ A e. B ) -> ( F " A ) e. _V ) | 
						
							| 11 |  | imadmrn |  |-  ( F " dom F ) = ran F | 
						
							| 12 | 5 | imaeq2d |  |-  ( F Fn A -> ( F " dom F ) = ( F " A ) ) | 
						
							| 13 | 11 12 | eqtr3id |  |-  ( F Fn A -> ran F = ( F " A ) ) | 
						
							| 14 | 13 | eleq1d |  |-  ( F Fn A -> ( ran F e. _V <-> ( F " A ) e. _V ) ) | 
						
							| 15 | 14 | biimpar |  |-  ( ( F Fn A /\ ( F " A ) e. _V ) -> ran F e. _V ) | 
						
							| 16 | 10 15 | syldan |  |-  ( ( F Fn A /\ A e. B ) -> ran F e. _V ) | 
						
							| 17 |  | xpexg |  |-  ( ( dom F e. B /\ ran F e. _V ) -> ( dom F X. ran F ) e. _V ) | 
						
							| 18 | 7 16 17 | syl2anc |  |-  ( ( F Fn A /\ A e. B ) -> ( dom F X. ran F ) e. _V ) | 
						
							| 19 |  | ssexg |  |-  ( ( F C_ ( dom F X. ran F ) /\ ( dom F X. ran F ) e. _V ) -> F e. _V ) | 
						
							| 20 | 4 18 19 | syl2anc |  |-  ( ( F Fn A /\ A e. B ) -> F e. _V ) |