| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
| 2 |
1
|
adantr |
|- ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) = F ) |
| 3 |
|
reseq2 |
|- ( x = (/) -> ( F |` x ) = ( F |` (/) ) ) |
| 4 |
3
|
eleq1d |
|- ( x = (/) -> ( ( F |` x ) e. Fin <-> ( F |` (/) ) e. Fin ) ) |
| 5 |
4
|
imbi2d |
|- ( x = (/) -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` (/) ) e. Fin ) ) ) |
| 6 |
|
reseq2 |
|- ( x = y -> ( F |` x ) = ( F |` y ) ) |
| 7 |
6
|
eleq1d |
|- ( x = y -> ( ( F |` x ) e. Fin <-> ( F |` y ) e. Fin ) ) |
| 8 |
7
|
imbi2d |
|- ( x = y -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) ) ) |
| 9 |
|
reseq2 |
|- ( x = ( y u. { z } ) -> ( F |` x ) = ( F |` ( y u. { z } ) ) ) |
| 10 |
9
|
eleq1d |
|- ( x = ( y u. { z } ) -> ( ( F |` x ) e. Fin <-> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 11 |
10
|
imbi2d |
|- ( x = ( y u. { z } ) -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) ) |
| 12 |
|
reseq2 |
|- ( x = A -> ( F |` x ) = ( F |` A ) ) |
| 13 |
12
|
eleq1d |
|- ( x = A -> ( ( F |` x ) e. Fin <-> ( F |` A ) e. Fin ) ) |
| 14 |
13
|
imbi2d |
|- ( x = A -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) ) ) |
| 15 |
|
res0 |
|- ( F |` (/) ) = (/) |
| 16 |
|
0fi |
|- (/) e. Fin |
| 17 |
15 16
|
eqeltri |
|- ( F |` (/) ) e. Fin |
| 18 |
17
|
a1i |
|- ( ( F Fn A /\ A e. Fin ) -> ( F |` (/) ) e. Fin ) |
| 19 |
|
resundi |
|- ( F |` ( y u. { z } ) ) = ( ( F |` y ) u. ( F |` { z } ) ) |
| 20 |
|
snfi |
|- { <. z , ( F ` z ) >. } e. Fin |
| 21 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 22 |
|
funressn |
|- ( Fun F -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 23 |
21 22
|
syl |
|- ( F Fn A -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 24 |
23
|
adantr |
|- ( ( F Fn A /\ A e. Fin ) -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 25 |
|
ssfi |
|- ( ( { <. z , ( F ` z ) >. } e. Fin /\ ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) -> ( F |` { z } ) e. Fin ) |
| 26 |
20 24 25
|
sylancr |
|- ( ( F Fn A /\ A e. Fin ) -> ( F |` { z } ) e. Fin ) |
| 27 |
|
unfi |
|- ( ( ( F |` y ) e. Fin /\ ( F |` { z } ) e. Fin ) -> ( ( F |` y ) u. ( F |` { z } ) ) e. Fin ) |
| 28 |
26 27
|
sylan2 |
|- ( ( ( F |` y ) e. Fin /\ ( F Fn A /\ A e. Fin ) ) -> ( ( F |` y ) u. ( F |` { z } ) ) e. Fin ) |
| 29 |
19 28
|
eqeltrid |
|- ( ( ( F |` y ) e. Fin /\ ( F Fn A /\ A e. Fin ) ) -> ( F |` ( y u. { z } ) ) e. Fin ) |
| 30 |
29
|
expcom |
|- ( ( F Fn A /\ A e. Fin ) -> ( ( F |` y ) e. Fin -> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 31 |
30
|
a2i |
|- ( ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) -> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 32 |
31
|
a1i |
|- ( y e. Fin -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) -> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) ) |
| 33 |
5 8 11 14 18 32
|
findcard2 |
|- ( A e. Fin -> ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) ) |
| 34 |
33
|
anabsi7 |
|- ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) |
| 35 |
2 34
|
eqeltrrd |
|- ( ( F Fn A /\ A e. Fin ) -> F e. Fin ) |