Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
2 |
1
|
3ad2ant1 |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> Fun F ) |
3 |
|
simp2 |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> S C_ A ) |
4 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
5 |
4
|
3ad2ant1 |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> dom F = A ) |
6 |
3 5
|
sseqtrrd |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> S C_ dom F ) |
7 |
2 6
|
jca |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> ( Fun F /\ S C_ dom F ) ) |
8 |
|
simp3 |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> X e. S ) |
9 |
|
funfvima2 |
|- ( ( Fun F /\ S C_ dom F ) -> ( X e. S -> ( F ` X ) e. ( F " S ) ) ) |
10 |
7 8 9
|
sylc |
|- ( ( F Fn A /\ S C_ A /\ X e. S ) -> ( F ` X ) e. ( F " S ) ) |