Step |
Hyp |
Ref |
Expression |
1 |
|
fnfvimad.1 |
|- ( ph -> F Fn A ) |
2 |
|
fnfvimad.2 |
|- ( ph -> B e. A ) |
3 |
|
fnfvimad.3 |
|- ( ph -> B e. C ) |
4 |
|
inss2 |
|- ( A i^i C ) C_ C |
5 |
|
imass2 |
|- ( ( A i^i C ) C_ C -> ( F " ( A i^i C ) ) C_ ( F " C ) ) |
6 |
4 5
|
ax-mp |
|- ( F " ( A i^i C ) ) C_ ( F " C ) |
7 |
|
inss1 |
|- ( A i^i C ) C_ A |
8 |
7
|
a1i |
|- ( ph -> ( A i^i C ) C_ A ) |
9 |
2 3
|
elind |
|- ( ph -> B e. ( A i^i C ) ) |
10 |
|
fnfvima |
|- ( ( F Fn A /\ ( A i^i C ) C_ A /\ B e. ( A i^i C ) ) -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
11 |
1 8 9 10
|
syl3anc |
|- ( ph -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
12 |
6 11
|
sselid |
|- ( ph -> ( F ` B ) e. ( F " C ) ) |